Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem41 Structured version   Visualization version   GIF version

Theorem lcfrlem41 41050
Description: Lemma for lcfr 41052. Eliminate span condition. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem38.h 𝐻 = (LHyp‘𝐾)
lcfrlem38.o = ((ocH‘𝐾)‘𝑊)
lcfrlem38.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem38.p + = (+g𝑈)
lcfrlem38.f 𝐹 = (LFnl‘𝑈)
lcfrlem38.l 𝐿 = (LKer‘𝑈)
lcfrlem38.d 𝐷 = (LDual‘𝑈)
lcfrlem38.q 𝑄 = (LSubSp‘𝐷)
lcfrlem38.c 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem38.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem38.g (𝜑𝐺𝑄)
lcfrlem38.gs (𝜑𝐺𝐶)
lcfrlem38.xe (𝜑𝑋𝐸)
lcfrlem38.ye (𝜑𝑌𝐸)
lcfrlem38.z 0 = (0g𝑈)
lcfrlem38.x (𝜑𝑋0 )
lcfrlem38.y (𝜑𝑌0 )
Assertion
Ref Expression
lcfrlem41 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝐷,𝑔   𝑔,𝐺   𝑓,𝑔,𝐿   ,𝑓,𝑔   + ,𝑓,𝑔   𝑈,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔   0 ,𝑓,𝑔   𝜑,𝑔
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓,𝑔)   𝐷(𝑓)   𝑄(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐺(𝑓)   𝐻(𝑓,𝑔)   𝐾(𝑓,𝑔)   𝑊(𝑓,𝑔)

Proof of Theorem lcfrlem41
StepHypRef Expression
1 lcfrlem38.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcfrlem38.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem38.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem38.p . . 3 + = (+g𝑈)
5 eqid 2728 . . 3 (LSpan‘𝑈) = (LSpan‘𝑈)
6 lcfrlem38.l . . 3 𝐿 = (LKer‘𝑈)
7 lcfrlem38.d . . 3 𝐷 = (LDual‘𝑈)
8 lcfrlem38.q . . 3 𝑄 = (LSubSp‘𝐷)
9 lcfrlem38.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
109adantr 480 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 lcfrlem38.g . . . 4 (𝜑𝐺𝑄)
1211adantr 480 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌})) → 𝐺𝑄)
13 lcfrlem38.e . . 3 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
14 lcfrlem38.xe . . . 4 (𝜑𝑋𝐸)
1514adantr 480 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌})) → 𝑋𝐸)
16 lcfrlem38.ye . . . 4 (𝜑𝑌𝐸)
1716adantr 480 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌})) → 𝑌𝐸)
18 simpr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌})) → ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌}))
191, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 15, 17, 18lcfrlem6 41014 . 2 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌})) → (𝑋 + 𝑌) ∈ 𝐸)
20 lcfrlem38.f . . 3 𝐹 = (LFnl‘𝑈)
21 lcfrlem38.c . . 3 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
229adantr 480 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2311adantr 480 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → 𝐺𝑄)
24 lcfrlem38.gs . . . 4 (𝜑𝐺𝐶)
2524adantr 480 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → 𝐺𝐶)
2614adantr 480 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → 𝑋𝐸)
2716adantr 480 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → 𝑌𝐸)
28 lcfrlem38.z . . 3 0 = (0g𝑈)
29 lcfrlem38.x . . . 4 (𝜑𝑋0 )
3029adantr 480 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → 𝑋0 )
31 lcfrlem38.y . . . 4 (𝜑𝑌0 )
3231adantr 480 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → 𝑌0 )
33 simpr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌}))
341, 2, 3, 4, 20, 6, 7, 8, 21, 13, 22, 23, 25, 26, 27, 28, 30, 32, 5, 33lcfrlem40 41049 . 2 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → (𝑋 + 𝑌) ∈ 𝐸)
3519, 34pm2.61dane 3025 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2936  {crab 3428  wss 3945  {csn 4624   ciun 4991  cfv 6542  (class class class)co 7414  +gcplusg 17226  0gc0g 17414  LSubSpclss 20808  LSpanclspn 20848  LFnlclfn 38523  LKerclk 38551  LDualcld 38589  HLchlt 38816  LHypclh 39451  DVecHcdvh 40545  ocHcoch 40814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-riotaBAD 38419
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17416  df-mre 17559  df-mrc 17560  df-acs 17562  df-proset 18280  df-poset 18298  df-plt 18315  df-lub 18331  df-glb 18332  df-join 18333  df-meet 18334  df-p0 18410  df-p1 18411  df-lat 18417  df-clat 18484  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-cntz 19261  df-oppg 19290  df-lsm 19584  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-drng 20619  df-lmod 20738  df-lss 20809  df-lsp 20849  df-lvec 20981  df-lsatoms 38442  df-lshyp 38443  df-lcv 38485  df-lfl 38524  df-lkr 38552  df-ldual 38590  df-oposet 38642  df-ol 38644  df-oml 38645  df-covers 38732  df-ats 38733  df-atl 38764  df-cvlat 38788  df-hlat 38817  df-llines 38965  df-lplanes 38966  df-lvols 38967  df-lines 38968  df-psubsp 38970  df-pmap 38971  df-padd 39263  df-lhyp 39455  df-laut 39456  df-ldil 39571  df-ltrn 39572  df-trl 39626  df-tgrp 40210  df-tendo 40222  df-edring 40224  df-dveca 40470  df-disoa 40496  df-dvech 40546  df-dib 40606  df-dic 40640  df-dih 40696  df-doch 40815  df-djh 40862
This theorem is referenced by:  lcfrlem42  41051
  Copyright terms: Public domain W3C validator