Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem41 Structured version   Visualization version   GIF version

Theorem lcfrlem41 39334
Description: Lemma for lcfr 39336. Eliminate span condition. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem38.h 𝐻 = (LHyp‘𝐾)
lcfrlem38.o = ((ocH‘𝐾)‘𝑊)
lcfrlem38.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem38.p + = (+g𝑈)
lcfrlem38.f 𝐹 = (LFnl‘𝑈)
lcfrlem38.l 𝐿 = (LKer‘𝑈)
lcfrlem38.d 𝐷 = (LDual‘𝑈)
lcfrlem38.q 𝑄 = (LSubSp‘𝐷)
lcfrlem38.c 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem38.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem38.g (𝜑𝐺𝑄)
lcfrlem38.gs (𝜑𝐺𝐶)
lcfrlem38.xe (𝜑𝑋𝐸)
lcfrlem38.ye (𝜑𝑌𝐸)
lcfrlem38.z 0 = (0g𝑈)
lcfrlem38.x (𝜑𝑋0 )
lcfrlem38.y (𝜑𝑌0 )
Assertion
Ref Expression
lcfrlem41 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝐷,𝑔   𝑔,𝐺   𝑓,𝑔,𝐿   ,𝑓,𝑔   + ,𝑓,𝑔   𝑈,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔   0 ,𝑓,𝑔   𝜑,𝑔
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓,𝑔)   𝐷(𝑓)   𝑄(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐺(𝑓)   𝐻(𝑓,𝑔)   𝐾(𝑓,𝑔)   𝑊(𝑓,𝑔)

Proof of Theorem lcfrlem41
StepHypRef Expression
1 lcfrlem38.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcfrlem38.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem38.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem38.p . . 3 + = (+g𝑈)
5 eqid 2737 . . 3 (LSpan‘𝑈) = (LSpan‘𝑈)
6 lcfrlem38.l . . 3 𝐿 = (LKer‘𝑈)
7 lcfrlem38.d . . 3 𝐷 = (LDual‘𝑈)
8 lcfrlem38.q . . 3 𝑄 = (LSubSp‘𝐷)
9 lcfrlem38.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
109adantr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 lcfrlem38.g . . . 4 (𝜑𝐺𝑄)
1211adantr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌})) → 𝐺𝑄)
13 lcfrlem38.e . . 3 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
14 lcfrlem38.xe . . . 4 (𝜑𝑋𝐸)
1514adantr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌})) → 𝑋𝐸)
16 lcfrlem38.ye . . . 4 (𝜑𝑌𝐸)
1716adantr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌})) → 𝑌𝐸)
18 simpr 488 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌})) → ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌}))
191, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 15, 17, 18lcfrlem6 39298 . 2 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) = ((LSpan‘𝑈)‘{𝑌})) → (𝑋 + 𝑌) ∈ 𝐸)
20 lcfrlem38.f . . 3 𝐹 = (LFnl‘𝑈)
21 lcfrlem38.c . . 3 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
229adantr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2311adantr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → 𝐺𝑄)
24 lcfrlem38.gs . . . 4 (𝜑𝐺𝐶)
2524adantr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → 𝐺𝐶)
2614adantr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → 𝑋𝐸)
2716adantr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → 𝑌𝐸)
28 lcfrlem38.z . . 3 0 = (0g𝑈)
29 lcfrlem38.x . . . 4 (𝜑𝑋0 )
3029adantr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → 𝑋0 )
31 lcfrlem38.y . . . 4 (𝜑𝑌0 )
3231adantr 484 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → 𝑌0 )
33 simpr 488 . . 3 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌}))
341, 2, 3, 4, 20, 6, 7, 8, 21, 13, 22, 23, 25, 26, 27, 28, 30, 32, 5, 33lcfrlem40 39333 . 2 ((𝜑 ∧ ((LSpan‘𝑈)‘{𝑋}) ≠ ((LSpan‘𝑈)‘{𝑌})) → (𝑋 + 𝑌) ∈ 𝐸)
3519, 34pm2.61dane 3029 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  {crab 3065  wss 3866  {csn 4541   ciun 4904  cfv 6380  (class class class)co 7213  +gcplusg 16802  0gc0g 16944  LSubSpclss 19968  LSpanclspn 20008  LFnlclfn 36808  LKerclk 36836  LDualcld 36874  HLchlt 37101  LHypclh 37735  DVecHcdvh 38829  ocHcoch 39098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-riotaBAD 36704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-undef 8015  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-0g 16946  df-mre 17089  df-mrc 17090  df-acs 17092  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-p1 17932  df-lat 17938  df-clat 18005  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-cntz 18711  df-oppg 18738  df-lsm 19025  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-dvr 19701  df-drng 19769  df-lmod 19901  df-lss 19969  df-lsp 20009  df-lvec 20140  df-lsatoms 36727  df-lshyp 36728  df-lcv 36770  df-lfl 36809  df-lkr 36837  df-ldual 36875  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-llines 37249  df-lplanes 37250  df-lvols 37251  df-lines 37252  df-psubsp 37254  df-pmap 37255  df-padd 37547  df-lhyp 37739  df-laut 37740  df-ldil 37855  df-ltrn 37856  df-trl 37910  df-tgrp 38494  df-tendo 38506  df-edring 38508  df-dveca 38754  df-disoa 38780  df-dvech 38830  df-dib 38890  df-dic 38924  df-dih 38980  df-doch 39099  df-djh 39146
This theorem is referenced by:  lcfrlem42  39335
  Copyright terms: Public domain W3C validator