Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2i Structured version   Visualization version   GIF version

Theorem lclkrlem2i 40381
Description: Lemma for lclkr 40399. Eliminate the (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ) hypothesis. (Contributed by NM, 17-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2f.h 𝐻 = (LHypβ€˜πΎ)
lclkrlem2f.o βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
lclkrlem2f.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
lclkrlem2f.v 𝑉 = (Baseβ€˜π‘ˆ)
lclkrlem2f.s 𝑆 = (Scalarβ€˜π‘ˆ)
lclkrlem2f.q 𝑄 = (0gβ€˜π‘†)
lclkrlem2f.z 0 = (0gβ€˜π‘ˆ)
lclkrlem2f.a βŠ• = (LSSumβ€˜π‘ˆ)
lclkrlem2f.n 𝑁 = (LSpanβ€˜π‘ˆ)
lclkrlem2f.f 𝐹 = (LFnlβ€˜π‘ˆ)
lclkrlem2f.j 𝐽 = (LSHypβ€˜π‘ˆ)
lclkrlem2f.l 𝐿 = (LKerβ€˜π‘ˆ)
lclkrlem2f.d 𝐷 = (LDualβ€˜π‘ˆ)
lclkrlem2f.p + = (+gβ€˜π·)
lclkrlem2f.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
lclkrlem2f.b (πœ‘ β†’ 𝐡 ∈ (𝑉 βˆ– { 0 }))
lclkrlem2f.e (πœ‘ β†’ 𝐸 ∈ 𝐹)
lclkrlem2f.g (πœ‘ β†’ 𝐺 ∈ 𝐹)
lclkrlem2f.le (πœ‘ β†’ (πΏβ€˜πΈ) = ( βŠ₯ β€˜{𝑋}))
lclkrlem2f.lg (πœ‘ β†’ (πΏβ€˜πΊ) = ( βŠ₯ β€˜{π‘Œ}))
lclkrlem2f.kb (πœ‘ β†’ ((𝐸 + 𝐺)β€˜π΅) = 𝑄)
lclkrlem2f.nx (πœ‘ β†’ (Β¬ 𝑋 ∈ ( βŠ₯ β€˜{𝐡}) ∨ Β¬ π‘Œ ∈ ( βŠ₯ β€˜{𝐡})))
lclkrlem2i.x (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
lclkrlem2i.y (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
Assertion
Ref Expression
lclkrlem2i (πœ‘ β†’ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜(𝐸 + 𝐺)))) = (πΏβ€˜(𝐸 + 𝐺)))

Proof of Theorem lclkrlem2i
StepHypRef Expression
1 lclkrlem2f.h . . 3 𝐻 = (LHypβ€˜πΎ)
2 lclkrlem2f.o . . 3 βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
3 lclkrlem2f.u . . 3 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
4 lclkrlem2f.v . . 3 𝑉 = (Baseβ€˜π‘ˆ)
5 lclkrlem2f.z . . 3 0 = (0gβ€˜π‘ˆ)
6 lclkrlem2f.f . . 3 𝐹 = (LFnlβ€˜π‘ˆ)
7 lclkrlem2f.l . . 3 𝐿 = (LKerβ€˜π‘ˆ)
8 lclkrlem2f.d . . 3 𝐷 = (LDualβ€˜π‘ˆ)
9 lclkrlem2f.p . . 3 + = (+gβ€˜π·)
10 lclkrlem2f.k . . . 4 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
1110adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) = (πΏβ€˜πΊ)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
12 lclkrlem2i.x . . . 4 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
1312adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) = (πΏβ€˜πΊ)) β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
14 lclkrlem2f.e . . . 4 (πœ‘ β†’ 𝐸 ∈ 𝐹)
1514adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) = (πΏβ€˜πΊ)) β†’ 𝐸 ∈ 𝐹)
16 lclkrlem2f.g . . . 4 (πœ‘ β†’ 𝐺 ∈ 𝐹)
1716adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) = (πΏβ€˜πΊ)) β†’ 𝐺 ∈ 𝐹)
18 lclkrlem2f.le . . . 4 (πœ‘ β†’ (πΏβ€˜πΈ) = ( βŠ₯ β€˜{𝑋}))
1918adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) = (πΏβ€˜πΊ)) β†’ (πΏβ€˜πΈ) = ( βŠ₯ β€˜{𝑋}))
20 simpr 485 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) = (πΏβ€˜πΊ)) β†’ (πΏβ€˜πΈ) = (πΏβ€˜πΊ))
211, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 20lclkrlem2e 40377 . 2 ((πœ‘ ∧ (πΏβ€˜πΈ) = (πΏβ€˜πΊ)) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜(𝐸 + 𝐺)))) = (πΏβ€˜(𝐸 + 𝐺)))
22 lclkrlem2f.s . . 3 𝑆 = (Scalarβ€˜π‘ˆ)
23 lclkrlem2f.q . . 3 𝑄 = (0gβ€˜π‘†)
24 lclkrlem2f.a . . 3 βŠ• = (LSSumβ€˜π‘ˆ)
25 lclkrlem2f.n . . 3 𝑁 = (LSpanβ€˜π‘ˆ)
26 lclkrlem2f.j . . 3 𝐽 = (LSHypβ€˜π‘ˆ)
2710adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
28 lclkrlem2f.b . . . 4 (πœ‘ β†’ 𝐡 ∈ (𝑉 βˆ– { 0 }))
2928adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ)) β†’ 𝐡 ∈ (𝑉 βˆ– { 0 }))
3014adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ)) β†’ 𝐸 ∈ 𝐹)
3116adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ)) β†’ 𝐺 ∈ 𝐹)
3218adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ)) β†’ (πΏβ€˜πΈ) = ( βŠ₯ β€˜{𝑋}))
33 lclkrlem2f.lg . . . 4 (πœ‘ β†’ (πΏβ€˜πΊ) = ( βŠ₯ β€˜{π‘Œ}))
3433adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ)) β†’ (πΏβ€˜πΊ) = ( βŠ₯ β€˜{π‘Œ}))
35 lclkrlem2f.kb . . . 4 (πœ‘ β†’ ((𝐸 + 𝐺)β€˜π΅) = 𝑄)
3635adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ)) β†’ ((𝐸 + 𝐺)β€˜π΅) = 𝑄)
37 lclkrlem2f.nx . . . 4 (πœ‘ β†’ (Β¬ 𝑋 ∈ ( βŠ₯ β€˜{𝐡}) ∨ Β¬ π‘Œ ∈ ( βŠ₯ β€˜{𝐡})))
3837adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ)) β†’ (Β¬ 𝑋 ∈ ( βŠ₯ β€˜{𝐡}) ∨ Β¬ π‘Œ ∈ ( βŠ₯ β€˜{𝐡})))
3912adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ)) β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
40 lclkrlem2i.y . . . 4 (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
4140adantr 481 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ)) β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
42 simpr 485 . . 3 ((πœ‘ ∧ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ)) β†’ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ))
431, 2, 3, 4, 22, 23, 5, 24, 25, 6, 26, 7, 8, 9, 27, 29, 30, 31, 32, 34, 36, 38, 39, 41, 42lclkrlem2h 40380 . 2 ((πœ‘ ∧ (πΏβ€˜πΈ) β‰  (πΏβ€˜πΊ)) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜(𝐸 + 𝐺)))) = (πΏβ€˜(𝐸 + 𝐺)))
4421, 43pm2.61dane 3029 1 (πœ‘ β†’ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜(𝐸 + 𝐺)))) = (πΏβ€˜(𝐸 + 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   βˆ– cdif 3945  {csn 4628  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  +gcplusg 17196  Scalarcsca 17199  0gc0g 17384  LSSumclsm 19501  LSpanclspn 20581  LSHypclsh 37840  LFnlclfn 37922  LKerclk 37950  LDualcld 37988  HLchlt 38215  LHypclh 38850  DVecHcdvh 39944  ocHcoch 40213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-riotaBAD 37818
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-tpos 8210  df-undef 8257  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17386  df-mre 17529  df-mrc 17530  df-acs 17532  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-submnd 18671  df-grp 18821  df-minusg 18822  df-sbg 18823  df-subg 19002  df-cntz 19180  df-oppg 19209  df-lsm 19503  df-cmn 19649  df-abl 19650  df-mgp 19987  df-ur 20004  df-ring 20057  df-oppr 20149  df-dvdsr 20170  df-unit 20171  df-invr 20201  df-dvr 20214  df-drng 20358  df-lmod 20472  df-lss 20542  df-lsp 20582  df-lvec 20713  df-lsatoms 37841  df-lshyp 37842  df-lcv 37884  df-lfl 37923  df-lkr 37951  df-ldual 37989  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-llines 38364  df-lplanes 38365  df-lvols 38366  df-lines 38367  df-psubsp 38369  df-pmap 38370  df-padd 38662  df-lhyp 38854  df-laut 38855  df-ldil 38970  df-ltrn 38971  df-trl 39025  df-tgrp 39609  df-tendo 39621  df-edring 39623  df-dveca 39869  df-disoa 39895  df-dvech 39945  df-dib 40005  df-dic 40039  df-dih 40095  df-doch 40214  df-djh 40261
This theorem is referenced by:  lclkrlem2l  40384
  Copyright terms: Public domain W3C validator