![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2i | Structured version Visualization version GIF version |
Description: Lemma for lclkr 40399. Eliminate the (πΏβπΈ) β (πΏβπΊ) hypothesis. (Contributed by NM, 17-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2f.h | β’ π» = (LHypβπΎ) |
lclkrlem2f.o | β’ β₯ = ((ocHβπΎ)βπ) |
lclkrlem2f.u | β’ π = ((DVecHβπΎ)βπ) |
lclkrlem2f.v | β’ π = (Baseβπ) |
lclkrlem2f.s | β’ π = (Scalarβπ) |
lclkrlem2f.q | β’ π = (0gβπ) |
lclkrlem2f.z | β’ 0 = (0gβπ) |
lclkrlem2f.a | β’ β = (LSSumβπ) |
lclkrlem2f.n | β’ π = (LSpanβπ) |
lclkrlem2f.f | β’ πΉ = (LFnlβπ) |
lclkrlem2f.j | β’ π½ = (LSHypβπ) |
lclkrlem2f.l | β’ πΏ = (LKerβπ) |
lclkrlem2f.d | β’ π· = (LDualβπ) |
lclkrlem2f.p | β’ + = (+gβπ·) |
lclkrlem2f.k | β’ (π β (πΎ β HL β§ π β π»)) |
lclkrlem2f.b | β’ (π β π΅ β (π β { 0 })) |
lclkrlem2f.e | β’ (π β πΈ β πΉ) |
lclkrlem2f.g | β’ (π β πΊ β πΉ) |
lclkrlem2f.le | β’ (π β (πΏβπΈ) = ( β₯ β{π})) |
lclkrlem2f.lg | β’ (π β (πΏβπΊ) = ( β₯ β{π})) |
lclkrlem2f.kb | β’ (π β ((πΈ + πΊ)βπ΅) = π) |
lclkrlem2f.nx | β’ (π β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
lclkrlem2i.x | β’ (π β π β (π β { 0 })) |
lclkrlem2i.y | β’ (π β π β (π β { 0 })) |
Ref | Expression |
---|---|
lclkrlem2i | β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2f.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | lclkrlem2f.o | . . 3 β’ β₯ = ((ocHβπΎ)βπ) | |
3 | lclkrlem2f.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
4 | lclkrlem2f.v | . . 3 β’ π = (Baseβπ) | |
5 | lclkrlem2f.z | . . 3 β’ 0 = (0gβπ) | |
6 | lclkrlem2f.f | . . 3 β’ πΉ = (LFnlβπ) | |
7 | lclkrlem2f.l | . . 3 β’ πΏ = (LKerβπ) | |
8 | lclkrlem2f.d | . . 3 β’ π· = (LDualβπ) | |
9 | lclkrlem2f.p | . . 3 β’ + = (+gβπ·) | |
10 | lclkrlem2f.k | . . . 4 β’ (π β (πΎ β HL β§ π β π»)) | |
11 | 10 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) = (πΏβπΊ)) β (πΎ β HL β§ π β π»)) |
12 | lclkrlem2i.x | . . . 4 β’ (π β π β (π β { 0 })) | |
13 | 12 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) = (πΏβπΊ)) β π β (π β { 0 })) |
14 | lclkrlem2f.e | . . . 4 β’ (π β πΈ β πΉ) | |
15 | 14 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) = (πΏβπΊ)) β πΈ β πΉ) |
16 | lclkrlem2f.g | . . . 4 β’ (π β πΊ β πΉ) | |
17 | 16 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) = (πΏβπΊ)) β πΊ β πΉ) |
18 | lclkrlem2f.le | . . . 4 β’ (π β (πΏβπΈ) = ( β₯ β{π})) | |
19 | 18 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) = (πΏβπΊ)) β (πΏβπΈ) = ( β₯ β{π})) |
20 | simpr 485 | . . 3 β’ ((π β§ (πΏβπΈ) = (πΏβπΊ)) β (πΏβπΈ) = (πΏβπΊ)) | |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 20 | lclkrlem2e 40377 | . 2 β’ ((π β§ (πΏβπΈ) = (πΏβπΊ)) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
22 | lclkrlem2f.s | . . 3 β’ π = (Scalarβπ) | |
23 | lclkrlem2f.q | . . 3 β’ π = (0gβπ) | |
24 | lclkrlem2f.a | . . 3 β’ β = (LSSumβπ) | |
25 | lclkrlem2f.n | . . 3 β’ π = (LSpanβπ) | |
26 | lclkrlem2f.j | . . 3 β’ π½ = (LSHypβπ) | |
27 | 10 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) β (πΏβπΊ)) β (πΎ β HL β§ π β π»)) |
28 | lclkrlem2f.b | . . . 4 β’ (π β π΅ β (π β { 0 })) | |
29 | 28 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) β (πΏβπΊ)) β π΅ β (π β { 0 })) |
30 | 14 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) β (πΏβπΊ)) β πΈ β πΉ) |
31 | 16 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) β (πΏβπΊ)) β πΊ β πΉ) |
32 | 18 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) β (πΏβπΊ)) β (πΏβπΈ) = ( β₯ β{π})) |
33 | lclkrlem2f.lg | . . . 4 β’ (π β (πΏβπΊ) = ( β₯ β{π})) | |
34 | 33 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) β (πΏβπΊ)) β (πΏβπΊ) = ( β₯ β{π})) |
35 | lclkrlem2f.kb | . . . 4 β’ (π β ((πΈ + πΊ)βπ΅) = π) | |
36 | 35 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) β (πΏβπΊ)) β ((πΈ + πΊ)βπ΅) = π) |
37 | lclkrlem2f.nx | . . . 4 β’ (π β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) | |
38 | 37 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) β (πΏβπΊ)) β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
39 | 12 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) β (πΏβπΊ)) β π β (π β { 0 })) |
40 | lclkrlem2i.y | . . . 4 β’ (π β π β (π β { 0 })) | |
41 | 40 | adantr 481 | . . 3 β’ ((π β§ (πΏβπΈ) β (πΏβπΊ)) β π β (π β { 0 })) |
42 | simpr 485 | . . 3 β’ ((π β§ (πΏβπΈ) β (πΏβπΊ)) β (πΏβπΈ) β (πΏβπΊ)) | |
43 | 1, 2, 3, 4, 22, 23, 5, 24, 25, 6, 26, 7, 8, 9, 27, 29, 30, 31, 32, 34, 36, 38, 39, 41, 42 | lclkrlem2h 40380 | . 2 β’ ((π β§ (πΏβπΈ) β (πΏβπΊ)) β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
44 | 21, 43 | pm2.61dane 3029 | 1 β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β¨ wo 845 = wceq 1541 β wcel 2106 β wne 2940 β cdif 3945 {csn 4628 βcfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 Scalarcsca 17199 0gc0g 17384 LSSumclsm 19501 LSpanclspn 20581 LSHypclsh 37840 LFnlclfn 37922 LKerclk 37950 LDualcld 37988 HLchlt 38215 LHypclh 38850 DVecHcdvh 39944 ocHcoch 40213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-riotaBAD 37818 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-undef 8257 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17386 df-mre 17529 df-mrc 17530 df-acs 17532 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-grp 18821 df-minusg 18822 df-sbg 18823 df-subg 19002 df-cntz 19180 df-oppg 19209 df-lsm 19503 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-dvr 20214 df-drng 20358 df-lmod 20472 df-lss 20542 df-lsp 20582 df-lvec 20713 df-lsatoms 37841 df-lshyp 37842 df-lcv 37884 df-lfl 37923 df-lkr 37951 df-ldual 37989 df-oposet 38041 df-ol 38043 df-oml 38044 df-covers 38131 df-ats 38132 df-atl 38163 df-cvlat 38187 df-hlat 38216 df-llines 38364 df-lplanes 38365 df-lvols 38366 df-lines 38367 df-psubsp 38369 df-pmap 38370 df-padd 38662 df-lhyp 38854 df-laut 38855 df-ldil 38970 df-ltrn 38971 df-trl 39025 df-tgrp 39609 df-tendo 39621 df-edring 39623 df-dveca 39869 df-disoa 39895 df-dvech 39945 df-dib 40005 df-dic 40039 df-dih 40095 df-doch 40214 df-djh 40261 |
This theorem is referenced by: lclkrlem2l 40384 |
Copyright terms: Public domain | W3C validator |