Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2t | Structured version Visualization version GIF version |
Description: Lemma for lclkr 39297. We eliminate all hypotheses with 𝐵 here. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2m.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lclkrlem2m.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2m.q | ⊢ × = (.r‘𝑆) |
lclkrlem2m.z | ⊢ 0 = (0g‘𝑆) |
lclkrlem2m.i | ⊢ 𝐼 = (invr‘𝑆) |
lclkrlem2m.m | ⊢ − = (-g‘𝑈) |
lclkrlem2m.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2m.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2m.p | ⊢ + = (+g‘𝐷) |
lclkrlem2m.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2m.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lclkrlem2m.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2m.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2n.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2n.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2o.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2o.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2o.a | ⊢ ⊕ = (LSSum‘𝑈) |
lclkrlem2o.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2q.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
lclkrlem2q.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
lclkrlem2t.n | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) |
Ref | Expression |
---|---|
lclkrlem2t | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2m.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
2 | lclkrlem2m.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
3 | lclkrlem2m.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
4 | lclkrlem2m.q | . . 3 ⊢ × = (.r‘𝑆) | |
5 | lclkrlem2m.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
6 | lclkrlem2m.i | . . 3 ⊢ 𝐼 = (invr‘𝑆) | |
7 | lclkrlem2m.m | . . 3 ⊢ − = (-g‘𝑈) | |
8 | lclkrlem2m.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
9 | lclkrlem2m.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
10 | lclkrlem2m.p | . . 3 ⊢ + = (+g‘𝐷) | |
11 | lclkrlem2m.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
12 | 11 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈)) → 𝑋 ∈ 𝑉) |
13 | lclkrlem2m.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
14 | 13 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈)) → 𝑌 ∈ 𝑉) |
15 | lclkrlem2m.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
16 | 15 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈)) → 𝐸 ∈ 𝐹) |
17 | lclkrlem2m.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
18 | 17 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈)) → 𝐺 ∈ 𝐹) |
19 | lclkrlem2n.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
20 | lclkrlem2n.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
21 | lclkrlem2o.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
22 | lclkrlem2o.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
23 | lclkrlem2o.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
24 | lclkrlem2o.a | . . 3 ⊢ ⊕ = (LSSum‘𝑈) | |
25 | lclkrlem2o.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
26 | 25 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
27 | lclkrlem2q.le | . . . 4 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
28 | 27 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈)) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
29 | lclkrlem2q.lg | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
30 | 29 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈)) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
31 | eqid 2738 | . . 3 ⊢ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) | |
32 | lclkrlem2t.n | . . . 4 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) | |
33 | 32 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈)) → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) |
34 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈)) → (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈)) | |
35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 26, 28, 30, 31, 33, 34 | lclkrlem2s 39289 | . 2 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = (0g‘𝑈)) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
36 | 11 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ≠ (0g‘𝑈)) → 𝑋 ∈ 𝑉) |
37 | 13 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ≠ (0g‘𝑈)) → 𝑌 ∈ 𝑉) |
38 | 15 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ≠ (0g‘𝑈)) → 𝐸 ∈ 𝐹) |
39 | 17 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ≠ (0g‘𝑈)) → 𝐺 ∈ 𝐹) |
40 | 25 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
41 | 27 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ≠ (0g‘𝑈)) → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
42 | 29 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ≠ (0g‘𝑈)) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
43 | 32 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ≠ (0g‘𝑈)) → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) |
44 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ≠ (0g‘𝑈)) → (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ≠ (0g‘𝑈)) | |
45 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 36, 37, 38, 39, 19, 20, 21, 22, 23, 24, 40, 41, 42, 31, 43, 44 | lclkrlem2q 39287 | . 2 ⊢ ((𝜑 ∧ (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ≠ (0g‘𝑈)) → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
46 | 35, 45 | pm2.61dane 3030 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 {csn 4550 ‘cfv 6389 (class class class)co 7222 Basecbs 16773 +gcplusg 16815 .rcmulr 16816 Scalarcsca 16818 ·𝑠 cvsca 16819 0gc0g 16957 -gcsg 18380 LSSumclsm 19036 invrcinvr 19702 LSpanclspn 20021 LFnlclfn 36821 LKerclk 36849 LDualcld 36887 HLchlt 37114 LHypclh 37748 DVecHcdvh 38842 ocHcoch 39111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5188 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-riotaBAD 36717 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-int 4869 df-iun 4915 df-iin 4916 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-of 7478 df-om 7654 df-1st 7770 df-2nd 7771 df-tpos 7977 df-undef 8024 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-er 8400 df-map 8519 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-nn 11844 df-2 11906 df-3 11907 df-4 11908 df-5 11909 df-6 11910 df-n0 12104 df-z 12190 df-uz 12452 df-fz 13109 df-struct 16713 df-sets 16730 df-slot 16748 df-ndx 16758 df-base 16774 df-ress 16798 df-plusg 16828 df-mulr 16829 df-sca 16831 df-vsca 16832 df-0g 16959 df-mre 17102 df-mrc 17103 df-acs 17105 df-proset 17815 df-poset 17833 df-plt 17849 df-lub 17865 df-glb 17866 df-join 17867 df-meet 17868 df-p0 17944 df-p1 17945 df-lat 17951 df-clat 18018 df-mgm 18127 df-sgrp 18176 df-mnd 18187 df-submnd 18232 df-grp 18381 df-minusg 18382 df-sbg 18383 df-subg 18553 df-cntz 18724 df-oppg 18751 df-lsm 19038 df-cmn 19185 df-abl 19186 df-mgp 19518 df-ur 19530 df-ring 19577 df-oppr 19654 df-dvdsr 19672 df-unit 19673 df-invr 19703 df-dvr 19714 df-drng 19782 df-lmod 19914 df-lss 19982 df-lsp 20022 df-lvec 20153 df-lsatoms 36740 df-lshyp 36741 df-lcv 36783 df-lfl 36822 df-lkr 36850 df-ldual 36888 df-oposet 36940 df-ol 36942 df-oml 36943 df-covers 37030 df-ats 37031 df-atl 37062 df-cvlat 37086 df-hlat 37115 df-llines 37262 df-lplanes 37263 df-lvols 37264 df-lines 37265 df-psubsp 37267 df-pmap 37268 df-padd 37560 df-lhyp 37752 df-laut 37753 df-ldil 37868 df-ltrn 37869 df-trl 37923 df-tgrp 38507 df-tendo 38519 df-edring 38521 df-dveca 38767 df-disoa 38793 df-dvech 38843 df-dib 38903 df-dic 38937 df-dih 38993 df-doch 39112 df-djh 39159 |
This theorem is referenced by: lclkrlem2u 39291 lclkrlem2x 39294 |
Copyright terms: Public domain | W3C validator |