Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem11 Structured version   Visualization version   GIF version

Theorem mapdpglem11 40356
Description: Lemma for mapdpg 40380. (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
Assertion
Ref Expression
mapdpglem11 (𝜑𝑔0 )
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem11
StepHypRef Expression
1 mapdpglem.ne . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2 mapdpglem.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdpglem.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
4 mapdpglem.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 mapdpglem.v . . . . 5 𝑉 = (Base‘𝑈)
6 mapdpglem.s . . . . 5 = (-g𝑈)
7 mapdpglem.n . . . . 5 𝑁 = (LSpan‘𝑈)
8 mapdpglem.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 mapdpglem.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
109adantr 481 . . . . 5 ((𝜑𝑔 = 0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 mapdpglem.x . . . . . 6 (𝜑𝑋𝑉)
1211adantr 481 . . . . 5 ((𝜑𝑔 = 0 ) → 𝑋𝑉)
13 mapdpglem.y . . . . . 6 (𝜑𝑌𝑉)
1413adantr 481 . . . . 5 ((𝜑𝑔 = 0 ) → 𝑌𝑉)
15 mapdpglem1.p . . . . 5 = (LSSum‘𝐶)
16 mapdpglem2.j . . . . 5 𝐽 = (LSpan‘𝐶)
17 mapdpglem3.f . . . . 5 𝐹 = (Base‘𝐶)
18 mapdpglem3.te . . . . . 6 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
1918adantr 481 . . . . 5 ((𝜑𝑔 = 0 ) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
20 mapdpglem3.a . . . . 5 𝐴 = (Scalar‘𝑈)
21 mapdpglem3.b . . . . 5 𝐵 = (Base‘𝐴)
22 mapdpglem3.t . . . . 5 · = ( ·𝑠𝐶)
23 mapdpglem3.r . . . . 5 𝑅 = (-g𝐶)
24 mapdpglem3.g . . . . . 6 (𝜑𝐺𝐹)
2524adantr 481 . . . . 5 ((𝜑𝑔 = 0 ) → 𝐺𝐹)
26 mapdpglem3.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
2726adantr 481 . . . . 5 ((𝜑𝑔 = 0 ) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
28 mapdpglem4.q . . . . 5 𝑄 = (0g𝑈)
291adantr 481 . . . . 5 ((𝜑𝑔 = 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
30 mapdpglem4.jt . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
3130adantr 481 . . . . 5 ((𝜑𝑔 = 0 ) → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
32 mapdpglem4.z . . . . 5 0 = (0g𝐴)
33 mapdpglem4.g4 . . . . . 6 (𝜑𝑔𝐵)
3433adantr 481 . . . . 5 ((𝜑𝑔 = 0 ) → 𝑔𝐵)
35 mapdpglem4.z4 . . . . . 6 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
3635adantr 481 . . . . 5 ((𝜑𝑔 = 0 ) → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
37 mapdpglem4.t4 . . . . . 6 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
3837adantr 481 . . . . 5 ((𝜑𝑔 = 0 ) → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
39 mapdpglem4.xn . . . . . 6 (𝜑𝑋𝑄)
4039adantr 481 . . . . 5 ((𝜑𝑔 = 0 ) → 𝑋𝑄)
41 simpr 485 . . . . 5 ((𝜑𝑔 = 0 ) → 𝑔 = 0 )
422, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 27, 28, 29, 31, 32, 34, 36, 38, 40, 41mapdpglem10 40355 . . . 4 ((𝜑𝑔 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
4342ex 413 . . 3 (𝜑 → (𝑔 = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
4443necon3d 2960 . 2 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → 𝑔0 ))
451, 44mpd 15 1 (𝜑𝑔0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2939  {csn 4622  cfv 6532  (class class class)co 7393  Basecbs 17126  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17367  -gcsg 18796  LSSumclsm 19466  LSpanclspn 20531  HLchlt 38023  LHypclh 38658  DVecHcdvh 39752  LCDualclcd 40260  mapdcmpd 40298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-riotaBAD 37626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-tpos 8193  df-undef 8240  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-n0 12455  df-z 12541  df-uz 12805  df-fz 13467  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17369  df-mre 17512  df-mrc 17513  df-acs 17515  df-proset 18230  df-poset 18248  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-grp 18797  df-minusg 18798  df-sbg 18799  df-subg 18975  df-cntz 19147  df-oppg 19174  df-lsm 19468  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-oppr 20102  df-dvdsr 20123  df-unit 20124  df-invr 20154  df-dvr 20165  df-drng 20267  df-lmod 20422  df-lss 20492  df-lsp 20532  df-lvec 20663  df-lsatoms 37649  df-lshyp 37650  df-lcv 37692  df-lfl 37731  df-lkr 37759  df-ldual 37797  df-oposet 37849  df-ol 37851  df-oml 37852  df-covers 37939  df-ats 37940  df-atl 37971  df-cvlat 37995  df-hlat 38024  df-llines 38172  df-lplanes 38173  df-lvols 38174  df-lines 38175  df-psubsp 38177  df-pmap 38178  df-padd 38470  df-lhyp 38662  df-laut 38663  df-ldil 38778  df-ltrn 38779  df-trl 38833  df-tgrp 39417  df-tendo 39429  df-edring 39431  df-dveca 39677  df-disoa 39703  df-dvech 39753  df-dib 39813  df-dic 39847  df-dih 39903  df-doch 40022  df-djh 40069  df-lcdual 40261  df-mapd 40299
This theorem is referenced by:  mapdpglem17N  40362  mapdpglem18  40363  mapdpglem19  40364  mapdpglem21  40366  mapdpglem22  40367
  Copyright terms: Public domain W3C validator