Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem16 Structured version   Visualization version   GIF version

Theorem mapdpglem16 41726
Description: Lemma for mapdpg 41745. Baer p. 45, line 7: "Likewise we see that z =/= 0." (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
Assertion
Ref Expression
mapdpglem16 (𝜑𝑧 ≠ (0g𝐶))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem16
StepHypRef Expression
1 mapdpglem.ne . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2 mapdpglem.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 mapdpglem.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
4 mapdpglem.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 mapdpglem.v . . . . 5 𝑉 = (Base‘𝑈)
6 mapdpglem.s . . . . 5 = (-g𝑈)
7 mapdpglem.n . . . . 5 𝑁 = (LSpan‘𝑈)
8 mapdpglem.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 mapdpglem.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
109adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
11 mapdpglem.x . . . . . 6 (𝜑𝑋𝑉)
1211adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → 𝑋𝑉)
13 mapdpglem.y . . . . . 6 (𝜑𝑌𝑉)
1413adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → 𝑌𝑉)
15 mapdpglem1.p . . . . 5 = (LSSum‘𝐶)
16 mapdpglem2.j . . . . 5 𝐽 = (LSpan‘𝐶)
17 mapdpglem3.f . . . . 5 𝐹 = (Base‘𝐶)
18 mapdpglem3.te . . . . . 6 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
1918adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
20 mapdpglem3.a . . . . 5 𝐴 = (Scalar‘𝑈)
21 mapdpglem3.b . . . . 5 𝐵 = (Base‘𝐴)
22 mapdpglem3.t . . . . 5 · = ( ·𝑠𝐶)
23 mapdpglem3.r . . . . 5 𝑅 = (-g𝐶)
24 mapdpglem3.g . . . . . 6 (𝜑𝐺𝐹)
2524adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → 𝐺𝐹)
26 mapdpglem3.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
2726adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
28 mapdpglem4.q . . . . 5 𝑄 = (0g𝑈)
291adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
30 mapdpglem4.jt . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
3130adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
32 mapdpglem4.z . . . . 5 0 = (0g𝐴)
33 mapdpglem4.g4 . . . . . 6 (𝜑𝑔𝐵)
3433adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → 𝑔𝐵)
35 mapdpglem4.z4 . . . . . 6 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
3635adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
37 mapdpglem4.t4 . . . . . 6 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
3837adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
39 mapdpglem4.xn . . . . . 6 (𝜑𝑋𝑄)
4039adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → 𝑋𝑄)
41 mapdpglem12.yn . . . . . 6 (𝜑𝑌𝑄)
4241adantr 480 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → 𝑌𝑄)
43 simpr 484 . . . . 5 ((𝜑𝑧 = (0g𝐶)) → 𝑧 = (0g𝐶))
442, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 27, 28, 29, 31, 32, 34, 36, 38, 40, 42, 43mapdpglem15 41725 . . . 4 ((𝜑𝑧 = (0g𝐶)) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
4544ex 412 . . 3 (𝜑 → (𝑧 = (0g𝐶) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
4645necon3d 2949 . 2 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → 𝑧 ≠ (0g𝐶)))
471, 46mpd 15 1 (𝜑𝑧 ≠ (0g𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  {csn 4571  cfv 6476  (class class class)co 7341  Basecbs 17115  Scalarcsca 17159   ·𝑠 cvsca 17160  0gc0g 17338  -gcsg 18843  LSSumclsm 19541  LSpanclspn 20899  HLchlt 39389  LHypclh 40023  DVecHcdvh 41117  LCDualclcd 41625  mapdcmpd 41663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-riotaBAD 38992
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-undef 8198  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-0g 17340  df-mre 17483  df-mrc 17484  df-acs 17486  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-p1 18325  df-lat 18333  df-clat 18400  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19224  df-oppg 19253  df-lsm 19543  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-nzr 20423  df-rlreg 20604  df-domn 20605  df-drng 20641  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lvec 21032  df-lsatoms 39015  df-lshyp 39016  df-lcv 39058  df-lfl 39097  df-lkr 39125  df-ldual 39163  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-llines 39537  df-lplanes 39538  df-lvols 39539  df-lines 39540  df-psubsp 39542  df-pmap 39543  df-padd 39835  df-lhyp 40027  df-laut 40028  df-ldil 40143  df-ltrn 40144  df-trl 40198  df-tgrp 40782  df-tendo 40794  df-edring 40796  df-dveca 41042  df-disoa 41068  df-dvech 41118  df-dib 41178  df-dic 41212  df-dih 41268  df-doch 41387  df-djh 41434  df-lcdual 41626  df-mapd 41664
This theorem is referenced by:  mapdpglem18  41728
  Copyright terms: Public domain W3C validator