Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem1 | Structured version Visualization version GIF version |
Description: Prior to part 14 in [Baer] p. 49, line 25. (Contributed by NM, 31-May-2015.) |
Ref | Expression |
---|---|
hdmap14lem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem1.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem1.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem3.o | ⊢ 0 = (0g‘𝑈) |
hdmap14lem1.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem1.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem1.z | ⊢ 𝑍 = (0g‘𝑅) |
hdmap14lem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem2.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap14lem2.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem2.a | ⊢ 𝐴 = (Base‘𝑃) |
hdmap14lem2.q | ⊢ 𝑄 = (0g‘𝑃) |
hdmap14lem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem3.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) |
Ref | Expression |
---|---|
hdmap14lem1 | ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑋)}) = (𝐿‘{(𝑆‘(𝐹 · 𝑋))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem1.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap14lem1.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap14lem1.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap14lem1.t | . 2 ⊢ · = ( ·𝑠 ‘𝑈) | |
5 | hdmap14lem1.r | . 2 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hdmap14lem1.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
7 | hdmap14lem1.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap14lem2.e | . 2 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
9 | hdmap14lem1.l | . 2 ⊢ 𝐿 = (LSpan‘𝐶) | |
10 | hdmap14lem2.p | . 2 ⊢ 𝑃 = (Scalar‘𝐶) | |
11 | hdmap14lem2.a | . 2 ⊢ 𝐴 = (Base‘𝑃) | |
12 | hdmap14lem1.s | . 2 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
13 | hdmap14lem1.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
14 | hdmap14lem3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
15 | 14 | eldifad 3896 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
16 | hdmap14lem1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) | |
17 | 16 | eldifad 3896 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
18 | hdmap14lem1.z | . 2 ⊢ 𝑍 = (0g‘𝑅) | |
19 | eldifsni 4720 | . . 3 ⊢ (𝐹 ∈ (𝐵 ∖ {𝑍}) → 𝐹 ≠ 𝑍) | |
20 | 16, 19 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ≠ 𝑍) |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 20 | hdmap14lem1a 39786 | 1 ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑋)}) = (𝐿‘{(𝑆‘(𝐹 · 𝑋))})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 ∖ cdif 3881 {csn 4558 ‘cfv 6415 (class class class)co 7252 Basecbs 16815 Scalarcsca 16866 ·𝑠 cvsca 16867 0gc0g 17042 LSpanclspn 20123 HLchlt 37270 LHypclh 37904 DVecHcdvh 38998 LCDualclcd 39506 HDMapchdma 39712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 ax-riotaBAD 36873 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-of 7508 df-om 7685 df-1st 7801 df-2nd 7802 df-tpos 8010 df-undef 8057 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-map 8552 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-n0 12139 df-z 12225 df-uz 12487 df-fz 13144 df-struct 16751 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ress 16843 df-plusg 16876 df-mulr 16877 df-sca 16879 df-vsca 16880 df-0g 17044 df-mre 17187 df-mrc 17188 df-acs 17190 df-proset 17903 df-poset 17921 df-plt 17938 df-lub 17954 df-glb 17955 df-join 17956 df-meet 17957 df-p0 18033 df-p1 18034 df-lat 18040 df-clat 18107 df-mgm 18216 df-sgrp 18265 df-mnd 18276 df-submnd 18321 df-grp 18470 df-minusg 18471 df-sbg 18472 df-subg 18642 df-cntz 18813 df-oppg 18840 df-lsm 19131 df-cmn 19278 df-abl 19279 df-mgp 19611 df-ur 19628 df-ring 19675 df-oppr 19752 df-dvdsr 19773 df-unit 19774 df-invr 19804 df-dvr 19815 df-drng 19883 df-lmod 20015 df-lss 20084 df-lsp 20124 df-lvec 20255 df-lsatoms 36896 df-lshyp 36897 df-lcv 36939 df-lfl 36978 df-lkr 37006 df-ldual 37044 df-oposet 37096 df-ol 37098 df-oml 37099 df-covers 37186 df-ats 37187 df-atl 37218 df-cvlat 37242 df-hlat 37271 df-llines 37418 df-lplanes 37419 df-lvols 37420 df-lines 37421 df-psubsp 37423 df-pmap 37424 df-padd 37716 df-lhyp 37908 df-laut 37909 df-ldil 38024 df-ltrn 38025 df-trl 38079 df-tgrp 38663 df-tendo 38675 df-edring 38677 df-dveca 38923 df-disoa 38949 df-dvech 38999 df-dib 39059 df-dic 39093 df-dih 39149 df-doch 39268 df-djh 39315 df-lcdual 39507 df-mapd 39545 df-hvmap 39677 df-hdmap1 39713 df-hdmap 39714 |
This theorem is referenced by: hdmap14lem2N 39789 hdmap14lem3 39790 |
Copyright terms: Public domain | W3C validator |