Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1eu Structured version   Visualization version   GIF version

Theorem hdmap1eu 41803
Description: Convert mapdh9a 41768 to use the HDMap1 notation. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1eu.h 𝐻 = (LHyp‘𝐾)
hdmap1eu.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1eu.v 𝑉 = (Base‘𝑈)
hdmap1eu.o 0 = (0g𝑈)
hdmap1eu.n 𝑁 = (LSpan‘𝑈)
hdmap1eu.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1eu.d 𝐷 = (Base‘𝐶)
hdmap1eu.l 𝐿 = (LSpan‘𝐶)
hdmap1eu.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1eu.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1eu.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1eu.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1eu.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1eu.f (𝜑𝐹𝐷)
hdmap1eu.t (𝜑𝑇𝑉)
Assertion
Ref Expression
hdmap1eu (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝑦,𝑧,𝐶   𝑦,𝐷,𝑧   𝑦,𝐹,𝑧   𝑦,𝐿,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧   𝑦, 0 ,𝑧   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝑉,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑦,𝑧)   𝐼(𝑦,𝑧)   𝐾(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem hdmap1eu
Dummy variables 𝑔 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmap1eu.h . 2 𝐻 = (LHyp‘𝐾)
2 hdmap1eu.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1eu.v . 2 𝑉 = (Base‘𝑈)
4 eqid 2729 . 2 (-g𝑈) = (-g𝑈)
5 hdmap1eu.o . 2 0 = (0g𝑈)
6 hdmap1eu.n . 2 𝑁 = (LSpan‘𝑈)
7 hdmap1eu.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1eu.d . 2 𝐷 = (Base‘𝐶)
9 eqid 2729 . 2 (-g𝐶) = (-g𝐶)
10 eqid 2729 . 2 (0g𝐶) = (0g𝐶)
11 hdmap1eu.l . 2 𝐿 = (LSpan‘𝐶)
12 hdmap1eu.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1eu.i . 2 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1eu.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1eu.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
16 hdmap1eu.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
17 hdmap1eu.f . 2 (𝜑𝐹𝐷)
18 hdmap1eu.t . 2 (𝜑𝑇𝑉)
19 eqid 2729 . . 3 (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥))(-g𝑈)(2nd𝑥))})) = (𝐿‘{((2nd ‘(1st𝑥))(-g𝐶))}))))) = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥))(-g𝑈)(2nd𝑥))})) = (𝐿‘{((2nd ‘(1st𝑥))(-g𝐶))})))))
2019hdmap1cbv 41781 . 2 (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥))(-g𝑈)(2nd𝑥))})) = (𝐿‘{((2nd ‘(1st𝑥))(-g𝐶))}))))) = (𝑤 ∈ V ↦ if((2nd𝑤) = 0 , (0g𝐶), (𝑔𝐷 ((𝑀‘(𝑁‘{(2nd𝑤)})) = (𝐿‘{𝑔}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑤))(-g𝑈)(2nd𝑤))})) = (𝐿‘{((2nd ‘(1st𝑤))(-g𝐶)𝑔)})))))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20hdmap1eulem 41801 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3343  Vcvv 3438  cdif 3902  cun 3903  ifcif 4478  {csn 4579  cotp 4587  cmpt 5176  cfv 6486  crio 7309  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Basecbs 17138  0gc0g 17361  -gcsg 18832  LSpanclspn 20892  HLchlt 39328  LHypclh 39963  DVecHcdvh 41057  LCDualclcd 41565  mapdcmpd 41603  HDMap1chdma1 41770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-nzr 20416  df-rlreg 20597  df-domn 20598  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lsatoms 38954  df-lshyp 38955  df-lcv 38997  df-lfl 39036  df-lkr 39064  df-ldual 39102  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tgrp 40722  df-tendo 40734  df-edring 40736  df-dveca 40982  df-disoa 41008  df-dvech 41058  df-dib 41118  df-dic 41152  df-dih 41208  df-doch 41327  df-djh 41374  df-lcdual 41566  df-mapd 41604  df-hdmap1 41772
This theorem is referenced by:  hdmapcl  41809  hdmapval2lem  41810
  Copyright terms: Public domain W3C validator