| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1l6j | Structured version Visualization version GIF version | ||
| Description: Lemmma for hdmap1l6 41860. Eliminate (𝑁 { Y } ) = ( N {𝑍}) hypothesis. (Contributed by NM, 1-May-2015.) |
| Ref | Expression |
|---|---|
| hdmap1l6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap1l6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap1l6.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap1l6.p | ⊢ + = (+g‘𝑈) |
| hdmap1l6.s | ⊢ − = (-g‘𝑈) |
| hdmap1l6c.o | ⊢ 0 = (0g‘𝑈) |
| hdmap1l6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap1l6.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap1l6.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmap1l6.a | ⊢ ✚ = (+g‘𝐶) |
| hdmap1l6.r | ⊢ 𝑅 = (-g‘𝐶) |
| hdmap1l6.q | ⊢ 𝑄 = (0g‘𝐶) |
| hdmap1l6.l | ⊢ 𝐿 = (LSpan‘𝐶) |
| hdmap1l6.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmap1l6.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmap1l6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap1l6.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| hdmap1l6cl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap1l6.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
| hdmap1l6i.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| hdmap1l6i.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| hdmap1l6i.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| hdmap1l6j | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap1l6.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap1l6.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmap1l6.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmap1l6.p | . . 3 ⊢ + = (+g‘𝑈) | |
| 5 | hdmap1l6.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 6 | hdmap1l6c.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 7 | hdmap1l6.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 8 | hdmap1l6.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 9 | hdmap1l6.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 10 | hdmap1l6.a | . . 3 ⊢ ✚ = (+g‘𝐶) | |
| 11 | hdmap1l6.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 12 | hdmap1l6.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 13 | hdmap1l6.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
| 14 | hdmap1l6.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 15 | hdmap1l6.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 16 | hdmap1l6.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 18 | hdmap1l6.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → 𝐹 ∈ 𝐷) |
| 20 | hdmap1l6cl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 22 | hdmap1l6.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) | |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
| 24 | hdmap1l6i.xn | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| 26 | hdmap1l6i.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 28 | hdmap1l6i.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| 30 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
| 31 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 27, 29, 30 | hdmap1l6i 41857 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| 32 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 33 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → 𝐹 ∈ 𝐷) |
| 34 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 35 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
| 36 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 37 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| 38 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| 39 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
| 40 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) | |
| 41 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) | |
| 42 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 | hdmap1l6a 41848 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| 43 | 31, 42 | pm2.61dane 3015 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 {csn 4571 {cpr 4573 〈cotp 4579 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 0gc0g 17338 -gcsg 18843 LSpanclspn 20899 HLchlt 39389 LHypclh 40023 DVecHcdvh 41117 LCDualclcd 41625 mapdcmpd 41663 HDMap1chdma1 41830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-riotaBAD 38992 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-undef 8198 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-0g 17340 df-mre 17483 df-mrc 17484 df-acs 17486 df-proset 18195 df-poset 18214 df-plt 18229 df-lub 18245 df-glb 18246 df-join 18247 df-meet 18248 df-p0 18324 df-p1 18325 df-lat 18333 df-clat 18400 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19224 df-oppg 19253 df-lsm 19543 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-nzr 20423 df-rlreg 20604 df-domn 20605 df-drng 20641 df-lmod 20790 df-lss 20860 df-lsp 20900 df-lvec 21032 df-lsatoms 39015 df-lshyp 39016 df-lcv 39058 df-lfl 39097 df-lkr 39125 df-ldual 39163 df-oposet 39215 df-ol 39217 df-oml 39218 df-covers 39305 df-ats 39306 df-atl 39337 df-cvlat 39361 df-hlat 39390 df-llines 39537 df-lplanes 39538 df-lvols 39539 df-lines 39540 df-psubsp 39542 df-pmap 39543 df-padd 39835 df-lhyp 40027 df-laut 40028 df-ldil 40143 df-ltrn 40144 df-trl 40198 df-tgrp 40782 df-tendo 40794 df-edring 40796 df-dveca 41042 df-disoa 41068 df-dvech 41118 df-dib 41178 df-dic 41212 df-dih 41268 df-doch 41387 df-djh 41434 df-lcdual 41626 df-mapd 41664 df-hdmap1 41832 |
| This theorem is referenced by: hdmap1l6k 41859 |
| Copyright terms: Public domain | W3C validator |