Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6jN Structured version   Visualization version   GIF version

Theorem mapdh6jN 37820
Description: Lemmma for mapdh6N 37822. Eliminate (𝑁‘{𝑌}) = (𝑁‘{𝑍}) hypothesis. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6i.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6i.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh6i.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
mapdh6jN (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝑍,𝑥   ,   ,𝐼,𝑥   + ,,𝑥   ,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   (𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐾(𝑥,)   𝑉(𝑥)   𝑊(𝑥,)

Proof of Theorem mapdh6jN
StepHypRef Expression
1 mapdh.q . . 3 𝑄 = (0g𝐶)
2 mapdh.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh.h . . 3 𝐻 = (LHyp‘𝐾)
4 mapdh.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh.v . . 3 𝑉 = (Base‘𝑈)
7 mapdh.s . . 3 = (-g𝑈)
8 mapdhc.o . . 3 0 = (0g𝑈)
9 mapdh.n . . 3 𝑁 = (LSpan‘𝑈)
10 mapdh.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh.d . . 3 𝐷 = (Base‘𝐶)
12 mapdh.r . . 3 𝑅 = (-g𝐶)
13 mapdh.j . . 3 𝐽 = (LSpan‘𝐶)
14 mapdh.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1514adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdhc.f . . . 4 (𝜑𝐹𝐷)
1716adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → 𝐹𝐷)
18 mapdh.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
1918adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdhcl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 mapdh.p . . 3 + = (+g𝑈)
23 mapdh.a . . 3 = (+g𝐶)
24 mapdh6i.xn . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2524adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
26 mapdh6i.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
2726adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
28 mapdh6i.z . . . 4 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
2928adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → 𝑍 ∈ (𝑉 ∖ { 0 }))
30 simpr 479 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 22, 23, 25, 27, 29, 30mapdh6iN 37819 . 2 ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
3214adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3316adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → 𝐹𝐷)
3418adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
3520adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
3626adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
3728adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → 𝑍 ∈ (𝑉 ∖ { 0 }))
3824adantr 474 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
39 simpr 479 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
40 eqidd 2826 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑌⟩))
41 eqidd 2826 . . 3 ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))
421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 32, 33, 34, 35, 22, 23, 36, 37, 38, 39, 40, 41mapdh6aN 37810 . 2 ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
4331, 42pm2.61dane 3086 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1658  wcel 2166  wne 2999  Vcvv 3414  cdif 3795  ifcif 4306  {csn 4397  {cpr 4399  cotp 4405  cmpt 4952  cfv 6123  crio 6865  (class class class)co 6905  1st c1st 7426  2nd c2nd 7427  Basecbs 16222  +gcplusg 16305  0gc0g 16453  -gcsg 17778  LSpanclspn 19330  HLchlt 35425  LHypclh 36059  DVecHcdvh 37153  LCDualclcd 37661  mapdcmpd 37699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-riotaBAD 35028
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-ot 4406  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-tpos 7617  df-undef 7664  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-sca 16321  df-vsca 16322  df-0g 16455  df-mre 16599  df-mrc 16600  df-acs 16602  df-proset 17281  df-poset 17299  df-plt 17311  df-lub 17327  df-glb 17328  df-join 17329  df-meet 17330  df-p0 17392  df-p1 17393  df-lat 17399  df-clat 17461  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-grp 17779  df-minusg 17780  df-sbg 17781  df-subg 17942  df-cntz 18100  df-oppg 18126  df-lsm 18402  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-oppr 18977  df-dvdsr 18995  df-unit 18996  df-invr 19026  df-dvr 19037  df-drng 19105  df-lmod 19221  df-lss 19289  df-lsp 19331  df-lvec 19462  df-lsatoms 35051  df-lshyp 35052  df-lcv 35094  df-lfl 35133  df-lkr 35161  df-ldual 35199  df-oposet 35251  df-ol 35253  df-oml 35254  df-covers 35341  df-ats 35342  df-atl 35373  df-cvlat 35397  df-hlat 35426  df-llines 35573  df-lplanes 35574  df-lvols 35575  df-lines 35576  df-psubsp 35578  df-pmap 35579  df-padd 35871  df-lhyp 36063  df-laut 36064  df-ldil 36179  df-ltrn 36180  df-trl 36234  df-tgrp 36818  df-tendo 36830  df-edring 36832  df-dveca 37078  df-disoa 37104  df-dvech 37154  df-dib 37214  df-dic 37248  df-dih 37304  df-doch 37423  df-djh 37470  df-lcdual 37662  df-mapd 37700
This theorem is referenced by:  mapdh6kN  37821
  Copyright terms: Public domain W3C validator