| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6jN | Structured version Visualization version GIF version | ||
| Description: Lemmma for mapdh6N 41735. Eliminate (𝑁‘{𝑌}) = (𝑁‘{𝑍}) hypothesis. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh.s | ⊢ − = (-g‘𝑈) |
| mapdhc.o | ⊢ 0 = (0g‘𝑈) |
| mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdh.p | ⊢ + = (+g‘𝑈) |
| mapdh.a | ⊢ ✚ = (+g‘𝐶) |
| mapdh6i.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| mapdh6i.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdh6i.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| mapdh6jN | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 2 | mapdh.i | . . 3 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 3 | mapdh.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | mapdh.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 5 | mapdh.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | mapdh.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 7 | mapdh.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 8 | mapdhc.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 9 | mapdh.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 10 | mapdh.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 11 | mapdh.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 12 | mapdh.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 13 | mapdh.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 14 | mapdh.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 16 | mapdhc.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → 𝐹 ∈ 𝐷) |
| 18 | mapdh.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| 20 | mapdhcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 22 | mapdh.p | . . 3 ⊢ + = (+g‘𝑈) | |
| 23 | mapdh.a | . . 3 ⊢ ✚ = (+g‘𝐶) | |
| 24 | mapdh6i.xn | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| 26 | mapdh6i.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 27 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 28 | mapdh6i.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 29 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| 30 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
| 31 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 22, 23, 25, 27, 29, 30 | mapdh6iN 41732 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) = (𝑁‘{𝑍})) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| 32 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 33 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → 𝐹 ∈ 𝐷) |
| 34 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| 35 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 36 | 26 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 37 | 28 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| 38 | 24 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| 39 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
| 40 | eqidd 2730 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐼‘〈𝑋, 𝐹, 𝑌〉)) | |
| 41 | eqidd 2730 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) | |
| 42 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 32, 33, 34, 35, 22, 23, 36, 37, 38, 39, 40, 41 | mapdh6aN 41723 | . 2 ⊢ ((𝜑 ∧ (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| 43 | 31, 42 | pm2.61dane 3012 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∖ cdif 3908 ifcif 4484 {csn 4585 {cpr 4587 〈cotp 4593 ↦ cmpt 5183 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 Basecbs 17156 +gcplusg 17197 0gc0g 17379 -gcsg 18850 LSpanclspn 20910 HLchlt 39337 LHypclh 39972 DVecHcdvh 41066 LCDualclcd 41574 mapdcmpd 41612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-riotaBAD 38940 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-n0 12421 df-z 12508 df-uz 12772 df-fz 13447 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-0g 17381 df-mre 17524 df-mrc 17525 df-acs 17527 df-proset 18236 df-poset 18255 df-plt 18270 df-lub 18286 df-glb 18287 df-join 18288 df-meet 18289 df-p0 18365 df-p1 18366 df-lat 18374 df-clat 18441 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19232 df-oppg 19261 df-lsm 19551 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-oppr 20258 df-dvdsr 20278 df-unit 20279 df-invr 20309 df-dvr 20322 df-nzr 20434 df-rlreg 20615 df-domn 20616 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-lvec 21043 df-lsatoms 38963 df-lshyp 38964 df-lcv 39006 df-lfl 39045 df-lkr 39073 df-ldual 39111 df-oposet 39163 df-ol 39165 df-oml 39166 df-covers 39253 df-ats 39254 df-atl 39285 df-cvlat 39309 df-hlat 39338 df-llines 39486 df-lplanes 39487 df-lvols 39488 df-lines 39489 df-psubsp 39491 df-pmap 39492 df-padd 39784 df-lhyp 39976 df-laut 39977 df-ldil 40092 df-ltrn 40093 df-trl 40147 df-tgrp 40731 df-tendo 40743 df-edring 40745 df-dveca 40991 df-disoa 41017 df-dvech 41067 df-dib 41127 df-dic 41161 df-dih 41217 df-doch 41336 df-djh 41383 df-lcdual 41575 df-mapd 41613 |
| This theorem is referenced by: mapdh6kN 41734 |
| Copyright terms: Public domain | W3C validator |