Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6iN Structured version   Visualization version   GIF version

Theorem mapdh6iN 41684
Description: Lemmma for mapdh6N 41687. Eliminate auxiliary vector 𝑤. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdh6i.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6i.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh6i.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh6i.yz (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
Assertion
Ref Expression
mapdh6iN (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝑍,𝑥   ,   ,𝐼,𝑥   + ,,𝑥   ,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   (𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐾(𝑥,)   𝑉(𝑥)   𝑊(𝑥,)

Proof of Theorem mapdh6iN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh.n . . 3 𝑁 = (LSpan‘𝑈)
5 mapdh.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 mapdhcl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
76eldifad 3936 . . 3 (𝜑𝑋𝑉)
8 mapdh6i.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
98eldifad 3936 . . 3 (𝜑𝑌𝑉)
101, 2, 3, 4, 5, 7, 9dvh3dim 41386 . 2 (𝜑 → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
11 mapdh.q . . . 4 𝑄 = (0g𝐶)
12 mapdh.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
13 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
14 mapdh.s . . . 4 = (-g𝑈)
15 mapdhc.o . . . 4 0 = (0g𝑈)
16 mapdh.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
17 mapdh.d . . . 4 𝐷 = (Base‘𝐶)
18 mapdh.r . . . 4 𝑅 = (-g𝐶)
19 mapdh.j . . . 4 𝐽 = (LSpan‘𝐶)
2053ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 mapdhc.f . . . . 5 (𝜑𝐹𝐷)
22213ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐹𝐷)
23 mapdh.mn . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
24233ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
2563ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
26 mapdh.p . . . 4 + = (+g𝑈)
27 mapdh.a . . . 4 = (+g𝐶)
28 mapdh6i.xn . . . . 5 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
29283ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
30 mapdh6i.yz . . . . 5 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
31303ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
3283ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
33 mapdh6i.z . . . . 5 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
34333ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑍 ∈ (𝑉 ∖ { 0 }))
35 eqid 2734 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
361, 2, 5dvhlmod 41050 . . . . . 6 (𝜑𝑈 ∈ LMod)
37363ad2ant1 1133 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod)
383, 35, 4, 36, 7, 9lspprcl 20920 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
39383ad2ant1 1133 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
40 simp2 1137 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤𝑉)
41 simp3 1138 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
4215, 35, 37, 39, 40, 41lssneln0 20895 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ (𝑉 ∖ { 0 }))
4311, 12, 1, 13, 2, 3, 14, 15, 4, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 29, 31, 32, 34, 42, 41mapdh6hN 41683 . . 3 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
4443rexlimdv3a 3143 . 2 (𝜑 → (∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))))
4510, 44mpd 15 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3457  cdif 3921  ifcif 4498  {csn 4599  {cpr 4601  cotp 4607  cmpt 5198  cfv 6527  crio 7355  (class class class)co 7399  1st c1st 7980  2nd c2nd 7981  Basecbs 17213  +gcplusg 17256  0gc0g 17438  -gcsg 18903  LModclmod 20802  LSubSpclss 20873  LSpanclspn 20913  HLchlt 39289  LHypclh 39924  DVecHcdvh 41018  LCDualclcd 41526  mapdcmpd 41564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-riotaBAD 38892
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-ot 4608  df-uni 4881  df-int 4920  df-iun 4966  df-iin 4967  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-of 7665  df-om 7856  df-1st 7982  df-2nd 7983  df-tpos 8219  df-undef 8266  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-n0 12494  df-z 12581  df-uz 12845  df-fz 13514  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-mulr 17270  df-sca 17272  df-vsca 17273  df-0g 17440  df-mre 17583  df-mrc 17584  df-acs 17586  df-proset 18291  df-poset 18310  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18747  df-grp 18904  df-minusg 18905  df-sbg 18906  df-subg 19091  df-cntz 19285  df-oppg 19314  df-lsm 19602  df-cmn 19748  df-abl 19749  df-mgp 20086  df-rng 20098  df-ur 20127  df-ring 20180  df-oppr 20282  df-dvdsr 20302  df-unit 20303  df-invr 20333  df-dvr 20346  df-nzr 20458  df-rlreg 20639  df-domn 20640  df-drng 20676  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lvec 21046  df-lsatoms 38915  df-lshyp 38916  df-lcv 38958  df-lfl 38997  df-lkr 39025  df-ldual 39063  df-oposet 39115  df-ol 39117  df-oml 39118  df-covers 39205  df-ats 39206  df-atl 39237  df-cvlat 39261  df-hlat 39290  df-llines 39438  df-lplanes 39439  df-lvols 39440  df-lines 39441  df-psubsp 39443  df-pmap 39444  df-padd 39736  df-lhyp 39928  df-laut 39929  df-ldil 40044  df-ltrn 40045  df-trl 40099  df-tgrp 40683  df-tendo 40695  df-edring 40697  df-dveca 40943  df-disoa 40969  df-dvech 41019  df-dib 41079  df-dic 41113  df-dih 41169  df-doch 41288  df-djh 41335  df-lcdual 41527  df-mapd 41565
This theorem is referenced by:  mapdh6jN  41685
  Copyright terms: Public domain W3C validator