Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcmp Structured version   Visualization version   GIF version

Theorem zarcmp 31235
 Description: The Zariski topology is compact. Proposition 1.1.10(ii) of [EGA], p. 82. (Contributed by Thierry Arnoux, 2-Jul-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Spec‘𝑅)
zartop.2 𝐽 = (TopOpen‘𝑆)
Assertion
Ref Expression
zarcmp (𝑅 ∈ CRing → 𝐽 ∈ Comp)

Proof of Theorem zarcmp
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zartop.1 . 2 𝑆 = (Spec‘𝑅)
2 zartop.2 . 2 𝐽 = (TopOpen‘𝑆)
3 sseq1 3943 . . . . 5 (𝑖 = 𝑘 → (𝑖𝑗𝑘𝑗))
43rabbidv 3430 . . . 4 (𝑖 = 𝑘 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗})
5 sseq2 3944 . . . . 5 (𝑗 = 𝑙 → (𝑘𝑗𝑘𝑙))
65cbvrabv 3442 . . . 4 {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑗} = {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑙}
74, 6eqtrdi 2852 . . 3 (𝑖 = 𝑘 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗} = {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑙})
87cbvmptv 5136 . 2 (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖𝑗}) = (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘𝑙})
91, 2, 8zarcmplem 31234 1 (𝑅 ∈ CRing → 𝐽 ∈ Comp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112  {crab 3113   ⊆ wss 3884   ↦ cmpt 5113  ‘cfv 6328  TopOpenctopn 16690  CRingccrg 19294  LIdealclidl 19938  Compccmp 21994  PrmIdealcprmidl 31018  Speccrspec 31215 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-reg 9044  ax-inf2 9092  ax-ac2 9878  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-rpss 7433  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-oi 8962  df-r1 9181  df-rank 9182  df-dju 9318  df-card 9356  df-ac 9531  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-prds 16716  df-pws 16718  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-ghm 18351  df-cntz 18442  df-lsm 18756  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-rnghom 19466  df-subrg 19529  df-lmod 19632  df-lss 19700  df-lsp 19740  df-lmhm 19790  df-lbs 19843  df-sra 19940  df-rgmod 19941  df-lidl 19942  df-rsp 19943  df-lpidl 20012  df-nzr 20027  df-cnfld 20095  df-zring 20167  df-zrh 20200  df-dsmm 20424  df-frlm 20439  df-uvc 20475  df-top 21502  df-topon 21519  df-cld 21627  df-cmp 21995  df-prmidl 31019  df-mxidl 31040  df-idlsrg 31054  df-rspec 31216 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator