Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zarcmp Structured version   Visualization version   GIF version

Theorem zarcmp 33382
Description: The Zariski topology is compact. Proposition 1.1.10(ii) of [EGA], p. 82. (Contributed by Thierry Arnoux, 2-Jul-2024.)
Hypotheses
Ref Expression
zartop.1 𝑆 = (Specβ€˜π‘…)
zartop.2 𝐽 = (TopOpenβ€˜π‘†)
Assertion
Ref Expression
zarcmp (𝑅 ∈ CRing β†’ 𝐽 ∈ Comp)

Proof of Theorem zarcmp
Dummy variables 𝑖 𝑗 π‘˜ 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zartop.1 . 2 𝑆 = (Specβ€˜π‘…)
2 zartop.2 . 2 𝐽 = (TopOpenβ€˜π‘†)
3 sseq1 4000 . . . . 5 (𝑖 = π‘˜ β†’ (𝑖 βŠ† 𝑗 ↔ π‘˜ βŠ† 𝑗))
43rabbidv 3432 . . . 4 (𝑖 = π‘˜ β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗})
5 sseq2 4001 . . . . 5 (𝑗 = 𝑙 β†’ (π‘˜ βŠ† 𝑗 ↔ π‘˜ βŠ† 𝑙))
65cbvrabv 3434 . . . 4 {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑗} = {𝑙 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑙}
74, 6eqtrdi 2780 . . 3 (𝑖 = π‘˜ β†’ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗} = {𝑙 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑙})
87cbvmptv 5252 . 2 (𝑖 ∈ (LIdealβ€˜π‘…) ↦ {𝑗 ∈ (PrmIdealβ€˜π‘…) ∣ 𝑖 βŠ† 𝑗}) = (π‘˜ ∈ (LIdealβ€˜π‘…) ↦ {𝑙 ∈ (PrmIdealβ€˜π‘…) ∣ π‘˜ βŠ† 𝑙})
91, 2, 8zarcmplem 33381 1 (𝑅 ∈ CRing β†’ 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  {crab 3424   βŠ† wss 3941   ↦ cmpt 5222  β€˜cfv 6534  TopOpenctopn 17372  CRingccrg 20135  LIdealclidl 21061  Compccmp 23234  PrmIdealcprmidl 33049  Speccrspec 33362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-reg 9584  ax-inf2 9633  ax-ac2 10455  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-disj 5105  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-rpss 7707  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8700  df-map 8819  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-oi 9502  df-r1 9756  df-rank 9757  df-dju 9893  df-card 9931  df-ac 10108  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13486  df-fzo 13629  df-seq 13968  df-hash 14292  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-prds 17398  df-pws 17400  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-mhm 18709  df-submnd 18710  df-grp 18862  df-minusg 18863  df-sbg 18864  df-mulg 18992  df-subg 19046  df-ghm 19135  df-cntz 19229  df-lsm 19552  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-cring 20137  df-rhm 20370  df-nzr 20411  df-subrng 20442  df-subrg 20467  df-lmod 20704  df-lss 20775  df-lsp 20815  df-lmhm 20866  df-lbs 20919  df-sra 21017  df-rgmod 21018  df-lidl 21063  df-rsp 21064  df-lpidl 21171  df-cnfld 21235  df-zring 21323  df-zrh 21379  df-dsmm 21616  df-frlm 21631  df-uvc 21667  df-top 22740  df-topon 22757  df-cld 22867  df-cmp 23235  df-prmidl 33050  df-mxidl 33072  df-idlsrg 33111  df-rspec 33363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator