| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zarcmp | Structured version Visualization version GIF version | ||
| Description: The Zariski topology is compact. Proposition 1.1.10(ii) of [EGA], p. 82. (Contributed by Thierry Arnoux, 2-Jul-2024.) |
| Ref | Expression |
|---|---|
| zartop.1 | ⊢ 𝑆 = (Spec‘𝑅) |
| zartop.2 | ⊢ 𝐽 = (TopOpen‘𝑆) |
| Ref | Expression |
|---|---|
| zarcmp | ⊢ (𝑅 ∈ CRing → 𝐽 ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zartop.1 | . 2 ⊢ 𝑆 = (Spec‘𝑅) | |
| 2 | zartop.2 | . 2 ⊢ 𝐽 = (TopOpen‘𝑆) | |
| 3 | sseq1 3984 | . . . . 5 ⊢ (𝑖 = 𝑘 → (𝑖 ⊆ 𝑗 ↔ 𝑘 ⊆ 𝑗)) | |
| 4 | 3 | rabbidv 3423 | . . . 4 ⊢ (𝑖 = 𝑘 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗}) |
| 5 | sseq2 3985 | . . . . 5 ⊢ (𝑗 = 𝑙 → (𝑘 ⊆ 𝑗 ↔ 𝑘 ⊆ 𝑙)) | |
| 6 | 5 | cbvrabv 3426 | . . . 4 ⊢ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑗} = {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑙} |
| 7 | 4, 6 | eqtrdi 2786 | . . 3 ⊢ (𝑖 = 𝑘 → {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗} = {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑙}) |
| 8 | 7 | cbvmptv 5225 | . 2 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) = (𝑘 ∈ (LIdeal‘𝑅) ↦ {𝑙 ∈ (PrmIdeal‘𝑅) ∣ 𝑘 ⊆ 𝑙}) |
| 9 | 1, 2, 8 | zarcmplem 33912 | 1 ⊢ (𝑅 ∈ CRing → 𝐽 ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 ↦ cmpt 5201 ‘cfv 6531 TopOpenctopn 17435 CRingccrg 20194 LIdealclidl 21167 Compccmp 23324 PrmIdealcprmidl 33450 Speccrspec 33893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-addf 11208 ax-mulf 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-rpss 7717 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-oi 9524 df-r1 9778 df-rank 9779 df-dju 9915 df-card 9953 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-lsm 19617 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-rhm 20432 df-nzr 20473 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lmhm 20980 df-lbs 21033 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-rsp 21170 df-lpidl 21283 df-cnfld 21316 df-zring 21408 df-zrh 21464 df-dsmm 21692 df-frlm 21707 df-uvc 21743 df-top 22832 df-topon 22849 df-cld 22957 df-cmp 23325 df-prmidl 33451 df-mxidl 33475 df-idlsrg 33516 df-rspec 33894 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |