![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapg | Structured version Visualization version GIF version |
Description: Apply the scalar sigma function (involution) πΊ to an inner product reverses the arguments. The inner product of π and π is represented by ((πβπ)βπ). Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). (Contributed by NM, 14-Jun-2015.) |
Ref | Expression |
---|---|
hdmapg.h | β’ π» = (LHypβπΎ) |
hdmapg.u | β’ π = ((DVecHβπΎ)βπ) |
hdmapg.v | β’ π = (Baseβπ) |
hdmapg.s | β’ π = ((HDMapβπΎ)βπ) |
hdmapg.g | β’ πΊ = ((HGMapβπΎ)βπ) |
hdmapg.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmapg.x | β’ (π β π β π) |
hdmapg.y | β’ (π β π β π) |
Ref | Expression |
---|---|
hdmapg | β’ (π β (πΊβ((πβπ)βπ)) = ((πβπ)βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapg.h | . 2 β’ π» = (LHypβπΎ) | |
2 | eqid 2724 | . 2 β’ β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© | |
3 | eqid 2724 | . 2 β’ ((ocHβπΎ)βπ) = ((ocHβπΎ)βπ) | |
4 | hdmapg.u | . 2 β’ π = ((DVecHβπΎ)βπ) | |
5 | hdmapg.v | . 2 β’ π = (Baseβπ) | |
6 | eqid 2724 | . 2 β’ (+gβπ) = (+gβπ) | |
7 | eqid 2724 | . 2 β’ ( Β·π βπ) = ( Β·π βπ) | |
8 | eqid 2724 | . 2 β’ (Scalarβπ) = (Scalarβπ) | |
9 | eqid 2724 | . 2 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
10 | eqid 2724 | . 2 β’ (LSSumβπ) = (LSSumβπ) | |
11 | eqid 2724 | . 2 β’ (LSpanβπ) = (LSpanβπ) | |
12 | hdmapg.k | . 2 β’ (π β (πΎ β HL β§ π β π»)) | |
13 | hdmapg.x | . 2 β’ (π β π β π) | |
14 | eqid 2724 | . 2 β’ (.rβ(Scalarβπ)) = (.rβ(Scalarβπ)) | |
15 | eqid 2724 | . 2 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
16 | eqid 2724 | . 2 β’ (+gβ(Scalarβπ)) = (+gβ(Scalarβπ)) | |
17 | hdmapg.s | . 2 β’ π = ((HDMapβπΎ)βπ) | |
18 | hdmapg.g | . 2 β’ πΊ = ((HGMapβπΎ)βπ) | |
19 | hdmapg.y | . 2 β’ (π β π β π) | |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | hdmapglem7 41304 | 1 β’ (π β (πΊβ((πβπ)βπ)) = ((πβπ)βπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β¨cop 4627 I cid 5564 βΎ cres 5669 βcfv 6534 Basecbs 17149 +gcplusg 17202 .rcmulr 17203 Scalarcsca 17205 Β·π cvsca 17206 0gc0g 17390 LSSumclsm 19550 LSpanclspn 20814 HLchlt 38724 LHypclh 39359 LTrncltrn 39476 DVecHcdvh 40453 ocHcoch 40722 HDMapchdma 41167 HGMapchg 41258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-riotaBAD 38327 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-ot 4630 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-tpos 8207 df-undef 8254 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13486 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-0g 17392 df-mre 17535 df-mrc 17536 df-acs 17538 df-proset 18256 df-poset 18274 df-plt 18291 df-lub 18307 df-glb 18308 df-join 18309 df-meet 18310 df-p0 18386 df-p1 18387 df-lat 18393 df-clat 18460 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-submnd 18710 df-grp 18862 df-minusg 18863 df-sbg 18864 df-subg 19046 df-cntz 19229 df-oppg 19258 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-drng 20585 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lvec 20947 df-lsatoms 38350 df-lshyp 38351 df-lcv 38393 df-lfl 38432 df-lkr 38460 df-ldual 38498 df-oposet 38550 df-ol 38552 df-oml 38553 df-covers 38640 df-ats 38641 df-atl 38672 df-cvlat 38696 df-hlat 38725 df-llines 38873 df-lplanes 38874 df-lvols 38875 df-lines 38876 df-psubsp 38878 df-pmap 38879 df-padd 39171 df-lhyp 39363 df-laut 39364 df-ldil 39479 df-ltrn 39480 df-trl 39534 df-tgrp 40118 df-tendo 40130 df-edring 40132 df-dveca 40378 df-disoa 40404 df-dvech 40454 df-dib 40514 df-dic 40548 df-dih 40604 df-doch 40723 df-djh 40770 df-lcdual 40962 df-mapd 41000 df-hvmap 41132 df-hdmap1 41168 df-hdmap 41169 df-hgmap 41259 |
This theorem is referenced by: hlhilphllem 41338 |
Copyright terms: Public domain | W3C validator |