Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > chordthm | Structured version Visualization version GIF version |
Description: The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 26058 twice to show that PA · PB and PC · PD both equal BQ 2 − PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. This is Metamath 100 proof #55. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
chordthm.angdef | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
chordthm.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
chordthm.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
chordthm.C | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
chordthm.D | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
chordthm.P | ⊢ (𝜑 → 𝑃 ∈ ℂ) |
chordthm.AneP | ⊢ (𝜑 → 𝐴 ≠ 𝑃) |
chordthm.BneP | ⊢ (𝜑 → 𝐵 ≠ 𝑃) |
chordthm.CneP | ⊢ (𝜑 → 𝐶 ≠ 𝑃) |
chordthm.DneP | ⊢ (𝜑 → 𝐷 ≠ 𝑃) |
chordthm.APB | ⊢ (𝜑 → ((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π) |
chordthm.CPD | ⊢ (𝜑 → ((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π) |
chordthm.Q | ⊢ (𝜑 → 𝑄 ∈ ℂ) |
chordthm.ABcirc | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
chordthm.ACcirc | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) |
chordthm.ADcirc | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) |
Ref | Expression |
---|---|
chordthm | ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chordthm.CPD | . . 3 ⊢ (𝜑 → ((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π) | |
2 | chordthm.angdef | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
3 | chordthm.C | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | chordthm.P | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℂ) | |
5 | chordthm.D | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
6 | chordthm.CneP | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝑃) | |
7 | chordthm.DneP | . . . . 5 ⊢ (𝜑 → 𝐷 ≠ 𝑃) | |
8 | 7 | necomd 2997 | . . . 4 ⊢ (𝜑 → 𝑃 ≠ 𝐷) |
9 | 2, 3, 4, 5, 6, 8 | angpieqvd 26053 | . . 3 ⊢ (𝜑 → (((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π ↔ ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) |
10 | 1, 9 | mpbid 231 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) |
11 | chordthm.APB | . . . . 5 ⊢ (𝜑 → ((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π) | |
12 | chordthm.A | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
13 | chordthm.B | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
14 | chordthm.AneP | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝑃) | |
15 | chordthm.BneP | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 𝑃) | |
16 | 15 | necomd 2997 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 𝐵) |
17 | 2, 12, 4, 13, 14, 16 | angpieqvd 26053 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π ↔ ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) |
18 | 11, 17 | mpbid 231 | . . . 4 ⊢ (𝜑 → ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) |
19 | 18 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) |
20 | chordthm.ABcirc | . . . . . . . 8 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) | |
21 | 20 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
22 | chordthm.ADcirc | . . . . . . . 8 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) | |
23 | 22 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) |
24 | 21, 23 | eqtr3d 2779 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐵 − 𝑄)) = (abs‘(𝐷 − 𝑄))) |
25 | 24 | oveq1d 7330 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝐵 − 𝑄))↑2) = ((abs‘(𝐷 − 𝑄))↑2)) |
26 | 25 | oveq1d 7330 | . . . 4 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (((abs‘(𝐵 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2)) = (((abs‘(𝐷 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2))) |
27 | 12 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝐴 ∈ ℂ) |
28 | 13 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝐵 ∈ ℂ) |
29 | chordthm.Q | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ℂ) | |
30 | 29 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑄 ∈ ℂ) |
31 | ioossicc 13238 | . . . . . 6 ⊢ (0(,)1) ⊆ (0[,]1) | |
32 | simprl 768 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑤 ∈ (0(,)1)) | |
33 | 31, 32 | sselid 3929 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑤 ∈ (0[,]1)) |
34 | simprr 770 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) | |
35 | 27, 28, 30, 33, 34, 21 | chordthmlem5 26058 | . . . 4 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = (((abs‘(𝐵 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2))) |
36 | 3 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝐶 ∈ ℂ) |
37 | 5 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝐷 ∈ ℂ) |
38 | simplrl 774 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑣 ∈ (0(,)1)) | |
39 | 31, 38 | sselid 3929 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑣 ∈ (0[,]1)) |
40 | simplrr 775 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) | |
41 | chordthm.ACcirc | . . . . . . 7 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) | |
42 | 41 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) |
43 | 42, 23 | eqtr3d 2779 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐶 − 𝑄)) = (abs‘(𝐷 − 𝑄))) |
44 | 36, 37, 30, 39, 40, 43 | chordthmlem5 26058 | . . . 4 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷))) = (((abs‘(𝐷 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2))) |
45 | 26, 35, 44 | 3eqtr4d 2787 | . . 3 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) |
46 | 19, 45 | rexlimddv 3155 | . 2 ⊢ ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) |
47 | 10, 46 | rexlimddv 3155 | 1 ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∃wrex 3071 ∖ cdif 3894 {csn 4571 ‘cfv 6465 (class class class)co 7315 ∈ cmpo 7317 ℂcc 10942 0cc0 10944 1c1 10945 + caddc 10947 · cmul 10949 − cmin 11278 / cdiv 11705 2c2 12101 (,)cioo 13152 [,]cicc 13155 ↑cexp 13855 ℑcim 14881 abscabs 15017 πcpi 15848 logclog 25782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-inf2 9470 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 ax-addf 11023 ax-mulf 11024 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-om 7758 df-1st 7876 df-2nd 7877 df-supp 8025 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-2o 8345 df-er 8546 df-map 8665 df-pm 8666 df-ixp 8734 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-fsupp 9199 df-fi 9240 df-sup 9271 df-inf 9272 df-oi 9339 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-z 12393 df-dec 12511 df-uz 12656 df-q 12762 df-rp 12804 df-xneg 12921 df-xadd 12922 df-xmul 12923 df-ioo 13156 df-ioc 13157 df-ico 13158 df-icc 13159 df-fz 13313 df-fzo 13456 df-fl 13585 df-mod 13663 df-seq 13795 df-exp 13856 df-fac 14061 df-bc 14090 df-hash 14118 df-shft 14850 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-limsup 15252 df-clim 15269 df-rlim 15270 df-sum 15470 df-ef 15849 df-sin 15851 df-cos 15852 df-pi 15854 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-starv 17047 df-sca 17048 df-vsca 17049 df-ip 17050 df-tset 17051 df-ple 17052 df-ds 17054 df-unif 17055 df-hom 17056 df-cco 17057 df-rest 17203 df-topn 17204 df-0g 17222 df-gsum 17223 df-topgen 17224 df-pt 17225 df-prds 17228 df-xrs 17283 df-qtop 17288 df-imas 17289 df-xps 17291 df-mre 17365 df-mrc 17366 df-acs 17368 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-submnd 18501 df-mulg 18770 df-cntz 18992 df-cmn 19456 df-psmet 20661 df-xmet 20662 df-met 20663 df-bl 20664 df-mopn 20665 df-fbas 20666 df-fg 20667 df-cnfld 20670 df-top 22115 df-topon 22132 df-topsp 22154 df-bases 22168 df-cld 22242 df-ntr 22243 df-cls 22244 df-nei 22321 df-lp 22359 df-perf 22360 df-cn 22450 df-cnp 22451 df-haus 22538 df-tx 22785 df-hmeo 22978 df-fil 23069 df-fm 23161 df-flim 23162 df-flf 23163 df-xms 23545 df-ms 23546 df-tms 23547 df-cncf 24113 df-limc 25102 df-dv 25103 df-log 25784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |