MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chordthm Structured version   Visualization version   GIF version

Theorem chordthm 24778
Description: The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 24777 twice to show that PA · PB and PC · PD both equal BQ 2 PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. This is Metamath 100 proof #55. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
chordthm.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
chordthm.A (𝜑𝐴 ∈ ℂ)
chordthm.B (𝜑𝐵 ∈ ℂ)
chordthm.C (𝜑𝐶 ∈ ℂ)
chordthm.D (𝜑𝐷 ∈ ℂ)
chordthm.P (𝜑𝑃 ∈ ℂ)
chordthm.AneP (𝜑𝐴𝑃)
chordthm.BneP (𝜑𝐵𝑃)
chordthm.CneP (𝜑𝐶𝑃)
chordthm.DneP (𝜑𝐷𝑃)
chordthm.APB (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)
chordthm.CPD (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)
chordthm.Q (𝜑𝑄 ∈ ℂ)
chordthm.ABcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
chordthm.ACcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))
chordthm.ADcirc (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))
Assertion
Ref Expression
chordthm (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem chordthm
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chordthm.CPD . . 3 (𝜑 → ((𝐶𝑃)𝐹(𝐷𝑃)) = π)
2 chordthm.angdef . . . 4 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
3 chordthm.C . . . 4 (𝜑𝐶 ∈ ℂ)
4 chordthm.P . . . 4 (𝜑𝑃 ∈ ℂ)
5 chordthm.D . . . 4 (𝜑𝐷 ∈ ℂ)
6 chordthm.CneP . . . 4 (𝜑𝐶𝑃)
7 chordthm.DneP . . . . 5 (𝜑𝐷𝑃)
87necomd 2998 . . . 4 (𝜑𝑃𝐷)
92, 3, 4, 5, 6, 8angpieqvd 24772 . . 3 (𝜑 → (((𝐶𝑃)𝐹(𝐷𝑃)) = π ↔ ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))))
101, 9mpbid 222 . 2 (𝜑 → ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
11 chordthm.APB . . . . 5 (𝜑 → ((𝐴𝑃)𝐹(𝐵𝑃)) = π)
12 chordthm.A . . . . . 6 (𝜑𝐴 ∈ ℂ)
13 chordthm.B . . . . . 6 (𝜑𝐵 ∈ ℂ)
14 chordthm.AneP . . . . . 6 (𝜑𝐴𝑃)
15 chordthm.BneP . . . . . . 7 (𝜑𝐵𝑃)
1615necomd 2998 . . . . . 6 (𝜑𝑃𝐵)
172, 12, 4, 13, 14, 16angpieqvd 24772 . . . . 5 (𝜑 → (((𝐴𝑃)𝐹(𝐵𝑃)) = π ↔ ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))))
1811, 17mpbid 222 . . . 4 (𝜑 → ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
1918adantr 466 . . 3 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
20 chordthm.ABcirc . . . . . . . 8 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
2120ad2antrr 705 . . . . . . 7 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐴𝑄)) = (abs‘(𝐵𝑄)))
22 chordthm.ADcirc . . . . . . . 8 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))
2322ad2antrr 705 . . . . . . 7 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐴𝑄)) = (abs‘(𝐷𝑄)))
2421, 23eqtr3d 2807 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐵𝑄)) = (abs‘(𝐷𝑄)))
2524oveq1d 6806 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝐵𝑄))↑2) = ((abs‘(𝐷𝑄))↑2))
2625oveq1d 6806 . . . 4 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
2712ad2antrr 705 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝐴 ∈ ℂ)
2813ad2antrr 705 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝐵 ∈ ℂ)
29 chordthm.Q . . . . . 6 (𝜑𝑄 ∈ ℂ)
3029ad2antrr 705 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑄 ∈ ℂ)
31 ioossicc 12457 . . . . . 6 (0(,)1) ⊆ (0[,]1)
32 simprl 754 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑤 ∈ (0(,)1))
3331, 32sseldi 3750 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑤 ∈ (0[,]1))
34 simprr 756 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))
3527, 28, 30, 33, 34, 21chordthmlem5 24777 . . . 4 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = (((abs‘(𝐵𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
363ad2antrr 705 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝐶 ∈ ℂ)
375ad2antrr 705 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝐷 ∈ ℂ)
38 simplrl 762 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑣 ∈ (0(,)1))
3931, 38sseldi 3750 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑣 ∈ (0[,]1))
40 simplrr 763 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))
41 chordthm.ACcirc . . . . . . 7 (𝜑 → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))
4241ad2antrr 705 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐴𝑄)) = (abs‘(𝐶𝑄)))
4342, 23eqtr3d 2807 . . . . 5 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐶𝑄)) = (abs‘(𝐷𝑄)))
4436, 37, 30, 39, 40, 43chordthmlem5 24777 . . . 4 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))) = (((abs‘(𝐷𝑄))↑2) − ((abs‘(𝑃𝑄))↑2)))
4526, 35, 443eqtr4d 2815 . . 3 (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
4619, 45rexlimddv 3183 . 2 ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
4710, 46rexlimddv 3183 1 (𝜑 → ((abs‘(𝑃𝐴)) · (abs‘(𝑃𝐵))) = ((abs‘(𝑃𝐶)) · (abs‘(𝑃𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  wrex 3062  cdif 3720  {csn 4316  cfv 6029  (class class class)co 6791  cmpt2 6793  cc 10134  0cc0 10136  1c1 10137   + caddc 10139   · cmul 10141  cmin 10466   / cdiv 10884  2c2 11270  (,)cioo 12373  [,]cicc 12376  cexp 13060  cim 14039  abscabs 14175  πcpi 14996  logclog 24515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-ioc 12378  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061  df-fac 13258  df-bc 13287  df-hash 13315  df-shft 14008  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-limsup 14403  df-clim 14420  df-rlim 14421  df-sum 14618  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-hom 16167  df-cco 16168  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-fbas 19951  df-fg 19952  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cld 21037  df-ntr 21038  df-cls 21039  df-nei 21116  df-lp 21154  df-perf 21155  df-cn 21245  df-cnp 21246  df-haus 21333  df-tx 21579  df-hmeo 21772  df-fil 21863  df-fm 21955  df-flim 21956  df-flf 21957  df-xms 22338  df-ms 22339  df-tms 22340  df-cncf 22894  df-limc 23843  df-dv 23844  df-log 24517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator