| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chordthm | Structured version Visualization version GIF version | ||
| Description: The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 26746 twice to show that PA · PB and PC · PD both equal BQ 2 − PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. This is Metamath 100 proof #55. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| chordthm.angdef | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
| chordthm.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| chordthm.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| chordthm.C | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| chordthm.D | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| chordthm.P | ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| chordthm.AneP | ⊢ (𝜑 → 𝐴 ≠ 𝑃) |
| chordthm.BneP | ⊢ (𝜑 → 𝐵 ≠ 𝑃) |
| chordthm.CneP | ⊢ (𝜑 → 𝐶 ≠ 𝑃) |
| chordthm.DneP | ⊢ (𝜑 → 𝐷 ≠ 𝑃) |
| chordthm.APB | ⊢ (𝜑 → ((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π) |
| chordthm.CPD | ⊢ (𝜑 → ((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π) |
| chordthm.Q | ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| chordthm.ABcirc | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
| chordthm.ACcirc | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) |
| chordthm.ADcirc | ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) |
| Ref | Expression |
|---|---|
| chordthm | ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chordthm.CPD | . . 3 ⊢ (𝜑 → ((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π) | |
| 2 | chordthm.angdef | . . . 4 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
| 3 | chordthm.C | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | chordthm.P | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℂ) | |
| 5 | chordthm.D | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 6 | chordthm.CneP | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 𝑃) | |
| 7 | chordthm.DneP | . . . . 5 ⊢ (𝜑 → 𝐷 ≠ 𝑃) | |
| 8 | 7 | necomd 2980 | . . . 4 ⊢ (𝜑 → 𝑃 ≠ 𝐷) |
| 9 | 2, 3, 4, 5, 6, 8 | angpieqvd 26741 | . . 3 ⊢ (𝜑 → (((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π ↔ ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) |
| 10 | 1, 9 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ (0(,)1)𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) |
| 11 | chordthm.APB | . . . . 5 ⊢ (𝜑 → ((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π) | |
| 12 | chordthm.A | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 13 | chordthm.B | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 14 | chordthm.AneP | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝑃) | |
| 15 | chordthm.BneP | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≠ 𝑃) | |
| 16 | 15 | necomd 2980 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 𝐵) |
| 17 | 2, 12, 4, 13, 14, 16 | angpieqvd 26741 | . . . . 5 ⊢ (𝜑 → (((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π ↔ ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) |
| 18 | 11, 17 | mpbid 232 | . . . 4 ⊢ (𝜑 → ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ∃𝑤 ∈ (0(,)1)𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) |
| 20 | chordthm.ABcirc | . . . . . . . 8 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) | |
| 21 | 20 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) |
| 22 | chordthm.ADcirc | . . . . . . . 8 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) | |
| 23 | 22 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) |
| 24 | 21, 23 | eqtr3d 2766 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐵 − 𝑄)) = (abs‘(𝐷 − 𝑄))) |
| 25 | 24 | oveq1d 7402 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝐵 − 𝑄))↑2) = ((abs‘(𝐷 − 𝑄))↑2)) |
| 26 | 25 | oveq1d 7402 | . . . 4 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (((abs‘(𝐵 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2)) = (((abs‘(𝐷 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2))) |
| 27 | 12 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝐴 ∈ ℂ) |
| 28 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝐵 ∈ ℂ) |
| 29 | chordthm.Q | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ ℂ) | |
| 30 | 29 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑄 ∈ ℂ) |
| 31 | ioossicc 13394 | . . . . . 6 ⊢ (0(,)1) ⊆ (0[,]1) | |
| 32 | simprl 770 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑤 ∈ (0(,)1)) | |
| 33 | 31, 32 | sselid 3944 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑤 ∈ (0[,]1)) |
| 34 | simprr 772 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵))) | |
| 35 | 27, 28, 30, 33, 34, 21 | chordthmlem5 26746 | . . . 4 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = (((abs‘(𝐵 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2))) |
| 36 | 3 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝐶 ∈ ℂ) |
| 37 | 5 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝐷 ∈ ℂ) |
| 38 | simplrl 776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑣 ∈ (0(,)1)) | |
| 39 | 31, 38 | sselid 3944 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑣 ∈ (0[,]1)) |
| 40 | simplrr 777 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷))) | |
| 41 | chordthm.ACcirc | . . . . . . 7 ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) | |
| 42 | 41 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) |
| 43 | 42, 23 | eqtr3d 2766 | . . . . 5 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → (abs‘(𝐶 − 𝑄)) = (abs‘(𝐷 − 𝑄))) |
| 44 | 36, 37, 30, 39, 40, 43 | chordthmlem5 26746 | . . . 4 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷))) = (((abs‘(𝐷 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2))) |
| 45 | 26, 35, 44 | 3eqtr4d 2774 | . . 3 ⊢ (((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) ∧ (𝑤 ∈ (0(,)1) ∧ 𝑃 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐵)))) → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) |
| 46 | 19, 45 | rexlimddv 3140 | . 2 ⊢ ((𝜑 ∧ (𝑣 ∈ (0(,)1) ∧ 𝑃 = ((𝑣 · 𝐶) + ((1 − 𝑣) · 𝐷)))) → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) |
| 47 | 10, 46 | rexlimddv 3140 | 1 ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∖ cdif 3911 {csn 4589 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 / cdiv 11835 2c2 12241 (,)cioo 13306 [,]cicc 13309 ↑cexp 14026 ℑcim 15064 abscabs 15200 πcpi 16032 logclog 26463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 df-log 26465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |