Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem24 Structured version   Visualization version   GIF version

Theorem mapdpglem24 40167
Description: Lemma for mapdpg 40169. Existence part - consolidate hypotheses in mapdpglem23 40157. (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem24 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Distinct variable groups:   𝐶,   ,𝐹   ,𝐺   ,𝐽   ,𝑀   ,𝑁   𝑅,   ,   𝑈,   ,𝑋   ,𝑌
Allowed substitution hints:   𝜑()   𝐻()   𝐾()   𝑉()   𝑊()   0 ()

Proof of Theorem mapdpglem24
Dummy variables 𝑔 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdpg.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdpg.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpg.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpg.v . . 3 𝑉 = (Base‘𝑈)
5 mapdpg.s . . 3 = (-g𝑈)
6 mapdpg.n . . 3 𝑁 = (LSpan‘𝑈)
7 mapdpg.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdpg.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 mapdpg.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
109eldifad 3922 . . 3 (𝜑𝑋𝑉)
11 mapdpg.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1211eldifad 3922 . . 3 (𝜑𝑌𝑉)
13 eqid 2736 . . 3 (LSSum‘𝐶) = (LSSum‘𝐶)
14 mapdpg.j . . 3 𝐽 = (LSpan‘𝐶)
151, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14mapdpglem2 40136 . 2 (𝜑 → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
1683ad2ant1 1133 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17103ad2ant1 1133 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑋𝑉)
18123ad2ant1 1133 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑌𝑉)
19 mapdpg.f . . . . 5 𝐹 = (Base‘𝐶)
20 simp2 1137 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))
21 eqid 2736 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
22 eqid 2736 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
23 eqid 2736 . . . . 5 ( ·𝑠𝐶) = ( ·𝑠𝐶)
24 mapdpg.r . . . . 5 𝑅 = (-g𝐶)
25 mapdpg.g . . . . . 6 (𝜑𝐺𝐹)
26253ad2ant1 1133 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝐺𝐹)
27 mapdpg.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
28273ad2ant1 1133 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
291, 2, 3, 4, 5, 6, 7, 16, 17, 18, 13, 14, 19, 20, 21, 22, 23, 24, 26, 28mapdpglem3 40138 . . . 4 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → ∃𝑔 ∈ (Base‘(Scalar‘𝑈))∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧))
30163ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31173ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑋𝑉)
32183ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑌𝑉)
33 simp12 1204 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))
34263ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝐺𝐹)
35283ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
36 mapdpg.z . . . . . . 7 0 = (0g𝑈)
37 mapdpg.ne . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
38373ad2ant1 1133 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
39383ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
40 simp13 1205 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
41 eqid 2736 . . . . . . 7 (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈))
42 simp2l 1199 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑔 ∈ (Base‘(Scalar‘𝑈)))
43 simp2r 1200 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
44 simp3 1138 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧))
45 eldifsni 4750 . . . . . . . . . 10 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
469, 45syl 17 . . . . . . . . 9 (𝜑𝑋0 )
47463ad2ant1 1133 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑋0 )
48473ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑋0 )
49 eldifsni 4750 . . . . . . . . . 10 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
5011, 49syl 17 . . . . . . . . 9 (𝜑𝑌0 )
51503ad2ant1 1133 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑌0 )
52513ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑌0 )
53 eqid 2736 . . . . . . 7 (((invr‘(Scalar‘𝑈))‘𝑔)( ·𝑠𝐶)𝑧) = (((invr‘(Scalar‘𝑈))‘𝑔)( ·𝑠𝐶)𝑧)
541, 2, 3, 4, 5, 6, 7, 30, 31, 32, 13, 14, 19, 33, 21, 22, 23, 24, 34, 35, 36, 39, 40, 41, 42, 43, 44, 48, 52, 53mapdpglem23 40157 . . . . . 6 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
55543exp 1119 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → ((𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) → (𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))))
5655rexlimdvv 3204 . . . 4 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (∃𝑔 ∈ (Base‘(Scalar‘𝑈))∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
5729, 56mpd 15 . . 3 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
5857rexlimdv3a 3156 . 2 (𝜑 → (∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
5915, 58mpd 15 1 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cdif 3907  {csn 4586  cfv 6496  (class class class)co 7357  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  -gcsg 18750  LSSumclsm 19416  invrcinvr 20100  LSpanclspn 20432  HLchlt 37812  LHypclh 38447  DVecHcdvh 39541  LCDualclcd 40049  mapdcmpd 40087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-mre 17466  df-mrc 17467  df-acs 17469  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-oppg 19124  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lsatoms 37438  df-lshyp 37439  df-lcv 37481  df-lfl 37520  df-lkr 37548  df-ldual 37586  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tgrp 39206  df-tendo 39218  df-edring 39220  df-dveca 39466  df-disoa 39492  df-dvech 39542  df-dib 39602  df-dic 39636  df-dih 39692  df-doch 39811  df-djh 39858  df-lcdual 40050  df-mapd 40088
This theorem is referenced by:  mapdpg  40169
  Copyright terms: Public domain W3C validator