Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem24 Structured version   Visualization version   GIF version

Theorem mapdpglem24 39697
Description: Lemma for mapdpg 39699. Existence part - consolidate hypotheses in mapdpglem23 39687. (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem24 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Distinct variable groups:   𝐶,   ,𝐹   ,𝐺   ,𝐽   ,𝑀   ,𝑁   𝑅,   ,   𝑈,   ,𝑋   ,𝑌
Allowed substitution hints:   𝜑()   𝐻()   𝐾()   𝑉()   𝑊()   0 ()

Proof of Theorem mapdpglem24
Dummy variables 𝑔 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdpg.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdpg.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpg.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpg.v . . 3 𝑉 = (Base‘𝑈)
5 mapdpg.s . . 3 = (-g𝑈)
6 mapdpg.n . . 3 𝑁 = (LSpan‘𝑈)
7 mapdpg.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdpg.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 mapdpg.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
109eldifad 3903 . . 3 (𝜑𝑋𝑉)
11 mapdpg.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1211eldifad 3903 . . 3 (𝜑𝑌𝑉)
13 eqid 2739 . . 3 (LSSum‘𝐶) = (LSSum‘𝐶)
14 mapdpg.j . . 3 𝐽 = (LSpan‘𝐶)
151, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14mapdpglem2 39666 . 2 (𝜑 → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
1683ad2ant1 1131 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17103ad2ant1 1131 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑋𝑉)
18123ad2ant1 1131 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑌𝑉)
19 mapdpg.f . . . . 5 𝐹 = (Base‘𝐶)
20 simp2 1135 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))
21 eqid 2739 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
22 eqid 2739 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
23 eqid 2739 . . . . 5 ( ·𝑠𝐶) = ( ·𝑠𝐶)
24 mapdpg.r . . . . 5 𝑅 = (-g𝐶)
25 mapdpg.g . . . . . 6 (𝜑𝐺𝐹)
26253ad2ant1 1131 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝐺𝐹)
27 mapdpg.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
28273ad2ant1 1131 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
291, 2, 3, 4, 5, 6, 7, 16, 17, 18, 13, 14, 19, 20, 21, 22, 23, 24, 26, 28mapdpglem3 39668 . . . 4 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → ∃𝑔 ∈ (Base‘(Scalar‘𝑈))∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧))
30163ad2ant1 1131 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31173ad2ant1 1131 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑋𝑉)
32183ad2ant1 1131 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑌𝑉)
33 simp12 1202 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))
34263ad2ant1 1131 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝐺𝐹)
35283ad2ant1 1131 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
36 mapdpg.z . . . . . . 7 0 = (0g𝑈)
37 mapdpg.ne . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
38373ad2ant1 1131 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
39383ad2ant1 1131 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
40 simp13 1203 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
41 eqid 2739 . . . . . . 7 (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈))
42 simp2l 1197 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑔 ∈ (Base‘(Scalar‘𝑈)))
43 simp2r 1198 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
44 simp3 1136 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧))
45 eldifsni 4728 . . . . . . . . . 10 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
469, 45syl 17 . . . . . . . . 9 (𝜑𝑋0 )
47463ad2ant1 1131 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑋0 )
48473ad2ant1 1131 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑋0 )
49 eldifsni 4728 . . . . . . . . . 10 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
5011, 49syl 17 . . . . . . . . 9 (𝜑𝑌0 )
51503ad2ant1 1131 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑌0 )
52513ad2ant1 1131 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑌0 )
53 eqid 2739 . . . . . . 7 (((invr‘(Scalar‘𝑈))‘𝑔)( ·𝑠𝐶)𝑧) = (((invr‘(Scalar‘𝑈))‘𝑔)( ·𝑠𝐶)𝑧)
541, 2, 3, 4, 5, 6, 7, 30, 31, 32, 13, 14, 19, 33, 21, 22, 23, 24, 34, 35, 36, 39, 40, 41, 42, 43, 44, 48, 52, 53mapdpglem23 39687 . . . . . 6 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
55543exp 1117 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → ((𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) → (𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))))
5655rexlimdvv 3223 . . . 4 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (∃𝑔 ∈ (Base‘(Scalar‘𝑈))∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
5729, 56mpd 15 . . 3 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
5857rexlimdv3a 3216 . 2 (𝜑 → (∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
5915, 58mpd 15 1 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wrex 3066  cdif 3888  {csn 4566  cfv 6430  (class class class)co 7268  Basecbs 16893  Scalarcsca 16946   ·𝑠 cvsca 16947  0gc0g 17131  -gcsg 18560  LSSumclsm 19220  invrcinvr 19894  LSpanclspn 20214  HLchlt 37343  LHypclh 37977  DVecHcdvh 39071  LCDualclcd 39579  mapdcmpd 39617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-riotaBAD 36946
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-tpos 8026  df-undef 8073  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-sca 16959  df-vsca 16960  df-0g 17133  df-mre 17276  df-mrc 17277  df-acs 17279  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-p1 18125  df-lat 18131  df-clat 18198  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-grp 18561  df-minusg 18562  df-sbg 18563  df-subg 18733  df-cntz 18904  df-oppg 18931  df-lsm 19222  df-cmn 19369  df-abl 19370  df-mgp 19702  df-ur 19719  df-ring 19766  df-oppr 19843  df-dvdsr 19864  df-unit 19865  df-invr 19895  df-dvr 19906  df-drng 19974  df-lmod 20106  df-lss 20175  df-lsp 20215  df-lvec 20346  df-lsatoms 36969  df-lshyp 36970  df-lcv 37012  df-lfl 37051  df-lkr 37079  df-ldual 37117  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-llines 37491  df-lplanes 37492  df-lvols 37493  df-lines 37494  df-psubsp 37496  df-pmap 37497  df-padd 37789  df-lhyp 37981  df-laut 37982  df-ldil 38097  df-ltrn 38098  df-trl 38152  df-tgrp 38736  df-tendo 38748  df-edring 38750  df-dveca 38996  df-disoa 39022  df-dvech 39072  df-dib 39132  df-dic 39166  df-dih 39222  df-doch 39341  df-djh 39388  df-lcdual 39580  df-mapd 39618
This theorem is referenced by:  mapdpg  39699
  Copyright terms: Public domain W3C validator