Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem24 Structured version   Visualization version   GIF version

Theorem mapdpglem24 37725
Description: Lemma for mapdpg 37727. Existence part - consolidate hypotheses in mapdpglem23 37715. (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem24 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Distinct variable groups:   𝐶,   ,𝐹   ,𝐺   ,𝐽   ,𝑀   ,𝑁   𝑅,   ,   𝑈,   ,𝑋   ,𝑌
Allowed substitution hints:   𝜑()   𝐻()   𝐾()   𝑉()   𝑊()   0 ()

Proof of Theorem mapdpglem24
Dummy variables 𝑔 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdpg.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdpg.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpg.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpg.v . . 3 𝑉 = (Base‘𝑈)
5 mapdpg.s . . 3 = (-g𝑈)
6 mapdpg.n . . 3 𝑁 = (LSpan‘𝑈)
7 mapdpg.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdpg.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 mapdpg.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
109eldifad 3781 . . 3 (𝜑𝑋𝑉)
11 mapdpg.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1211eldifad 3781 . . 3 (𝜑𝑌𝑉)
13 eqid 2799 . . 3 (LSSum‘𝐶) = (LSSum‘𝐶)
14 mapdpg.j . . 3 𝐽 = (LSpan‘𝐶)
151, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14mapdpglem2 37694 . 2 (𝜑 → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
1683ad2ant1 1164 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17103ad2ant1 1164 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑋𝑉)
18123ad2ant1 1164 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑌𝑉)
19 mapdpg.f . . . . 5 𝐹 = (Base‘𝐶)
20 simp2 1168 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))
21 eqid 2799 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
22 eqid 2799 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
23 eqid 2799 . . . . 5 ( ·𝑠𝐶) = ( ·𝑠𝐶)
24 mapdpg.r . . . . 5 𝑅 = (-g𝐶)
25 mapdpg.g . . . . . 6 (𝜑𝐺𝐹)
26253ad2ant1 1164 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝐺𝐹)
27 mapdpg.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
28273ad2ant1 1164 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
291, 2, 3, 4, 5, 6, 7, 16, 17, 18, 13, 14, 19, 20, 21, 22, 23, 24, 26, 28mapdpglem3 37696 . . . 4 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → ∃𝑔 ∈ (Base‘(Scalar‘𝑈))∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧))
30163ad2ant1 1164 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31173ad2ant1 1164 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑋𝑉)
32183ad2ant1 1164 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑌𝑉)
33 simp12 1262 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))
34263ad2ant1 1164 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝐺𝐹)
35283ad2ant1 1164 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
36 mapdpg.z . . . . . . 7 0 = (0g𝑈)
37 mapdpg.ne . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
38373ad2ant1 1164 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
39383ad2ant1 1164 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
40 simp13 1263 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
41 eqid 2799 . . . . . . 7 (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈))
42 simp2l 1257 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑔 ∈ (Base‘(Scalar‘𝑈)))
43 simp2r 1258 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
44 simp3 1169 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧))
45 eldifsni 4510 . . . . . . . . . 10 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
469, 45syl 17 . . . . . . . . 9 (𝜑𝑋0 )
47463ad2ant1 1164 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑋0 )
48473ad2ant1 1164 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑋0 )
49 eldifsni 4510 . . . . . . . . . 10 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
5011, 49syl 17 . . . . . . . . 9 (𝜑𝑌0 )
51503ad2ant1 1164 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑌0 )
52513ad2ant1 1164 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑌0 )
53 eqid 2799 . . . . . . 7 (((invr‘(Scalar‘𝑈))‘𝑔)( ·𝑠𝐶)𝑧) = (((invr‘(Scalar‘𝑈))‘𝑔)( ·𝑠𝐶)𝑧)
541, 2, 3, 4, 5, 6, 7, 30, 31, 32, 13, 14, 19, 33, 21, 22, 23, 24, 34, 35, 36, 39, 40, 41, 42, 43, 44, 48, 52, 53mapdpglem23 37715 . . . . . 6 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
55543exp 1149 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → ((𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) → (𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))))
5655rexlimdvv 3218 . . . 4 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (∃𝑔 ∈ (Base‘(Scalar‘𝑈))∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
5729, 56mpd 15 . . 3 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
5857rexlimdv3a 3214 . 2 (𝜑 → (∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
5915, 58mpd 15 1 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wrex 3090  cdif 3766  {csn 4368  cfv 6101  (class class class)co 6878  Basecbs 16184  Scalarcsca 16270   ·𝑠 cvsca 16271  0gc0g 16415  -gcsg 17740  LSSumclsm 18362  invrcinvr 18987  LSpanclspn 19292  HLchlt 35371  LHypclh 36005  DVecHcdvh 37099  LCDualclcd 37607  mapdcmpd 37645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-riotaBAD 34974
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-tpos 7590  df-undef 7637  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-0g 16417  df-mre 16561  df-mrc 16562  df-acs 16564  df-proset 17243  df-poset 17261  df-plt 17273  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-p0 17354  df-p1 17355  df-lat 17361  df-clat 17423  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-grp 17741  df-minusg 17742  df-sbg 17743  df-subg 17904  df-cntz 18062  df-oppg 18088  df-lsm 18364  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-oppr 18939  df-dvdsr 18957  df-unit 18958  df-invr 18988  df-dvr 18999  df-drng 19067  df-lmod 19183  df-lss 19251  df-lsp 19293  df-lvec 19424  df-lsatoms 34997  df-lshyp 34998  df-lcv 35040  df-lfl 35079  df-lkr 35107  df-ldual 35145  df-oposet 35197  df-ol 35199  df-oml 35200  df-covers 35287  df-ats 35288  df-atl 35319  df-cvlat 35343  df-hlat 35372  df-llines 35519  df-lplanes 35520  df-lvols 35521  df-lines 35522  df-psubsp 35524  df-pmap 35525  df-padd 35817  df-lhyp 36009  df-laut 36010  df-ldil 36125  df-ltrn 36126  df-trl 36180  df-tgrp 36764  df-tendo 36776  df-edring 36778  df-dveca 37024  df-disoa 37050  df-dvech 37100  df-dib 37160  df-dic 37194  df-dih 37250  df-doch 37369  df-djh 37416  df-lcdual 37608  df-mapd 37646
This theorem is referenced by:  mapdpg  37727
  Copyright terms: Public domain W3C validator