Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem24 Structured version   Visualization version   GIF version

Theorem mapdpglem24 41703
Description: Lemma for mapdpg 41705. Existence part - consolidate hypotheses in mapdpglem23 41693. (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpglem24 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Distinct variable groups:   𝐶,   ,𝐹   ,𝐺   ,𝐽   ,𝑀   ,𝑁   𝑅,   ,   𝑈,   ,𝑋   ,𝑌
Allowed substitution hints:   𝜑()   𝐻()   𝐾()   𝑉()   𝑊()   0 ()

Proof of Theorem mapdpglem24
Dummy variables 𝑔 𝑡 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdpg.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdpg.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpg.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpg.v . . 3 𝑉 = (Base‘𝑈)
5 mapdpg.s . . 3 = (-g𝑈)
6 mapdpg.n . . 3 𝑁 = (LSpan‘𝑈)
7 mapdpg.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdpg.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 mapdpg.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
109eldifad 3917 . . 3 (𝜑𝑋𝑉)
11 mapdpg.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1211eldifad 3917 . . 3 (𝜑𝑌𝑉)
13 eqid 2729 . . 3 (LSSum‘𝐶) = (LSSum‘𝐶)
14 mapdpg.j . . 3 𝐽 = (LSpan‘𝐶)
151, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14mapdpglem2 41672 . 2 (𝜑 → ∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
1683ad2ant1 1133 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17103ad2ant1 1133 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑋𝑉)
18123ad2ant1 1133 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑌𝑉)
19 mapdpg.f . . . . 5 𝐹 = (Base‘𝐶)
20 simp2 1137 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))
21 eqid 2729 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
22 eqid 2729 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
23 eqid 2729 . . . . 5 ( ·𝑠𝐶) = ( ·𝑠𝐶)
24 mapdpg.r . . . . 5 𝑅 = (-g𝐶)
25 mapdpg.g . . . . . 6 (𝜑𝐺𝐹)
26253ad2ant1 1133 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝐺𝐹)
27 mapdpg.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
28273ad2ant1 1133 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
291, 2, 3, 4, 5, 6, 7, 16, 17, 18, 13, 14, 19, 20, 21, 22, 23, 24, 26, 28mapdpglem3 41674 . . . 4 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → ∃𝑔 ∈ (Base‘(Scalar‘𝑈))∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧))
30163ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31173ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑋𝑉)
32183ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑌𝑉)
33 simp12 1205 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))
34263ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝐺𝐹)
35283ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
36 mapdpg.z . . . . . . 7 0 = (0g𝑈)
37 mapdpg.ne . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
38373ad2ant1 1133 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
39383ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
40 simp13 1206 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
41 eqid 2729 . . . . . . 7 (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈))
42 simp2l 1200 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑔 ∈ (Base‘(Scalar‘𝑈)))
43 simp2r 1201 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
44 simp3 1138 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧))
45 eldifsni 4744 . . . . . . . . . 10 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
469, 45syl 17 . . . . . . . . 9 (𝜑𝑋0 )
47463ad2ant1 1133 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑋0 )
48473ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑋0 )
49 eldifsni 4744 . . . . . . . . . 10 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
5011, 49syl 17 . . . . . . . . 9 (𝜑𝑌0 )
51503ad2ant1 1133 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → 𝑌0 )
52513ad2ant1 1133 . . . . . . 7 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → 𝑌0 )
53 eqid 2729 . . . . . . 7 (((invr‘(Scalar‘𝑈))‘𝑔)( ·𝑠𝐶)𝑧) = (((invr‘(Scalar‘𝑈))‘𝑔)( ·𝑠𝐶)𝑧)
541, 2, 3, 4, 5, 6, 7, 30, 31, 32, 13, 14, 19, 33, 21, 22, 23, 24, 34, 35, 36, 39, 40, 41, 42, 43, 44, 48, 52, 53mapdpglem23 41693 . . . . . 6 (((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) ∧ (𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) ∧ 𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧)) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
55543exp 1119 . . . . 5 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → ((𝑔 ∈ (Base‘(Scalar‘𝑈)) ∧ 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) → (𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))))
5655rexlimdvv 3185 . . . 4 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → (∃𝑔 ∈ (Base‘(Scalar‘𝑈))∃𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))𝑡 = ((𝑔( ·𝑠𝐶)𝐺)𝑅𝑧) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
5729, 56mpd 15 . . 3 ((𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡})) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
5857rexlimdv3a 3134 . 2 (𝜑 → (∃𝑡 ∈ ((𝑀‘(𝑁‘{𝑋}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))(𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}) → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
5915, 58mpd 15 1 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3902  {csn 4579  cfv 6486  (class class class)co 7353  Basecbs 17139  Scalarcsca 17183   ·𝑠 cvsca 17184  0gc0g 17362  -gcsg 18833  LSSumclsm 19532  invrcinvr 20291  LSpanclspn 20893  HLchlt 39348  LHypclh 39983  DVecHcdvh 41077  LCDualclcd 41585  mapdcmpd 41623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38951
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-sca 17196  df-vsca 17197  df-0g 17364  df-mre 17507  df-mrc 17508  df-acs 17510  df-proset 18219  df-poset 18238  df-plt 18253  df-lub 18269  df-glb 18270  df-join 18271  df-meet 18272  df-p0 18348  df-p1 18349  df-lat 18357  df-clat 18424  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-subg 19021  df-cntz 19215  df-oppg 19244  df-lsm 19534  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-dvr 20305  df-nzr 20417  df-rlreg 20598  df-domn 20599  df-drng 20635  df-lmod 20784  df-lss 20854  df-lsp 20894  df-lvec 21026  df-lsatoms 38974  df-lshyp 38975  df-lcv 39017  df-lfl 39056  df-lkr 39084  df-ldual 39122  df-oposet 39174  df-ol 39176  df-oml 39177  df-covers 39264  df-ats 39265  df-atl 39296  df-cvlat 39320  df-hlat 39349  df-llines 39497  df-lplanes 39498  df-lvols 39499  df-lines 39500  df-psubsp 39502  df-pmap 39503  df-padd 39795  df-lhyp 39987  df-laut 39988  df-ldil 40103  df-ltrn 40104  df-trl 40158  df-tgrp 40742  df-tendo 40754  df-edring 40756  df-dveca 41002  df-disoa 41028  df-dvech 41078  df-dib 41138  df-dic 41172  df-dih 41228  df-doch 41347  df-djh 41394  df-lcdual 41586  df-mapd 41624
This theorem is referenced by:  mapdpg  41705
  Copyright terms: Public domain W3C validator