Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem24 Structured version   Visualization version   GIF version

Theorem mapdpglem24 40878
Description: Lemma for mapdpg 40880. Existence part - consolidate hypotheses in mapdpglem23 40868. (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHypβ€˜πΎ)
mapdpg.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
mapdpg.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
mapdpg.v 𝑉 = (Baseβ€˜π‘ˆ)
mapdpg.s βˆ’ = (-gβ€˜π‘ˆ)
mapdpg.z 0 = (0gβ€˜π‘ˆ)
mapdpg.n 𝑁 = (LSpanβ€˜π‘ˆ)
mapdpg.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
mapdpg.f 𝐹 = (Baseβ€˜πΆ)
mapdpg.r 𝑅 = (-gβ€˜πΆ)
mapdpg.j 𝐽 = (LSpanβ€˜πΆ)
mapdpg.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
mapdpg.x (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
mapdpg.y (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
mapdpg.g (πœ‘ β†’ 𝐺 ∈ 𝐹)
mapdpg.ne (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
mapdpg.e (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐺}))
Assertion
Ref Expression
mapdpglem24 (πœ‘ β†’ βˆƒβ„Ž ∈ 𝐹 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})))
Distinct variable groups:   𝐢,β„Ž   β„Ž,𝐹   β„Ž,𝐺   β„Ž,𝐽   β„Ž,𝑀   β„Ž,𝑁   𝑅,β„Ž   βˆ’ ,β„Ž   π‘ˆ,β„Ž   β„Ž,𝑋   β„Ž,π‘Œ
Allowed substitution hints:   πœ‘(β„Ž)   𝐻(β„Ž)   𝐾(β„Ž)   𝑉(β„Ž)   π‘Š(β„Ž)   0 (β„Ž)

Proof of Theorem mapdpglem24
Dummy variables 𝑔 𝑑 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdpg.h . . 3 𝐻 = (LHypβ€˜πΎ)
2 mapdpg.m . . 3 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
3 mapdpg.u . . 3 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
4 mapdpg.v . . 3 𝑉 = (Baseβ€˜π‘ˆ)
5 mapdpg.s . . 3 βˆ’ = (-gβ€˜π‘ˆ)
6 mapdpg.n . . 3 𝑁 = (LSpanβ€˜π‘ˆ)
7 mapdpg.c . . 3 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
8 mapdpg.k . . 3 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
9 mapdpg.x . . . 4 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
109eldifad 3959 . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑉)
11 mapdpg.y . . . 4 (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
1211eldifad 3959 . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑉)
13 eqid 2730 . . 3 (LSSumβ€˜πΆ) = (LSSumβ€˜πΆ)
14 mapdpg.j . . 3 𝐽 = (LSpanβ€˜πΆ)
151, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14mapdpglem2 40847 . 2 (πœ‘ β†’ βˆƒπ‘‘ ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ})))(π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑}))
1683ad2ant1 1131 . . . . 5 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
17103ad2ant1 1131 . . . . 5 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ 𝑋 ∈ 𝑉)
18123ad2ant1 1131 . . . . 5 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ π‘Œ ∈ 𝑉)
19 mapdpg.f . . . . 5 𝐹 = (Baseβ€˜πΆ)
20 simp2 1135 . . . . 5 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))))
21 eqid 2730 . . . . 5 (Scalarβ€˜π‘ˆ) = (Scalarβ€˜π‘ˆ)
22 eqid 2730 . . . . 5 (Baseβ€˜(Scalarβ€˜π‘ˆ)) = (Baseβ€˜(Scalarβ€˜π‘ˆ))
23 eqid 2730 . . . . 5 ( ·𝑠 β€˜πΆ) = ( ·𝑠 β€˜πΆ)
24 mapdpg.r . . . . 5 𝑅 = (-gβ€˜πΆ)
25 mapdpg.g . . . . . 6 (πœ‘ β†’ 𝐺 ∈ 𝐹)
26253ad2ant1 1131 . . . . 5 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ 𝐺 ∈ 𝐹)
27 mapdpg.e . . . . . 6 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐺}))
28273ad2ant1 1131 . . . . 5 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐺}))
291, 2, 3, 4, 5, 6, 7, 16, 17, 18, 13, 14, 19, 20, 21, 22, 23, 24, 26, 28mapdpglem3 40849 . . . 4 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ βˆƒπ‘” ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βˆƒπ‘§ ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧))
30163ad2ant1 1131 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
31173ad2ant1 1131 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ 𝑋 ∈ 𝑉)
32183ad2ant1 1131 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ π‘Œ ∈ 𝑉)
33 simp12 1202 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))))
34263ad2ant1 1131 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ 𝐺 ∈ 𝐹)
35283ad2ant1 1131 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐺}))
36 mapdpg.z . . . . . . 7 0 = (0gβ€˜π‘ˆ)
37 mapdpg.ne . . . . . . . . 9 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
38373ad2ant1 1131 . . . . . . . 8 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
39383ad2ant1 1131 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
40 simp13 1203 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑}))
41 eqid 2730 . . . . . . 7 (0gβ€˜(Scalarβ€˜π‘ˆ)) = (0gβ€˜(Scalarβ€˜π‘ˆ))
42 simp2l 1197 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ 𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)))
43 simp2r 1198 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ})))
44 simp3 1136 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧))
45 eldifsni 4792 . . . . . . . . . 10 (𝑋 ∈ (𝑉 βˆ– { 0 }) β†’ 𝑋 β‰  0 )
469, 45syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑋 β‰  0 )
47463ad2ant1 1131 . . . . . . . 8 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ 𝑋 β‰  0 )
48473ad2ant1 1131 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ 𝑋 β‰  0 )
49 eldifsni 4792 . . . . . . . . . 10 (π‘Œ ∈ (𝑉 βˆ– { 0 }) β†’ π‘Œ β‰  0 )
5011, 49syl 17 . . . . . . . . 9 (πœ‘ β†’ π‘Œ β‰  0 )
51503ad2ant1 1131 . . . . . . . 8 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ π‘Œ β‰  0 )
52513ad2ant1 1131 . . . . . . 7 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ π‘Œ β‰  0 )
53 eqid 2730 . . . . . . 7 (((invrβ€˜(Scalarβ€˜π‘ˆ))β€˜π‘”)( ·𝑠 β€˜πΆ)𝑧) = (((invrβ€˜(Scalarβ€˜π‘ˆ))β€˜π‘”)( ·𝑠 β€˜πΆ)𝑧)
541, 2, 3, 4, 5, 6, 7, 30, 31, 32, 13, 14, 19, 33, 21, 22, 23, 24, 34, 35, 36, 39, 40, 41, 42, 43, 44, 48, 52, 53mapdpglem23 40868 . . . . . 6 (((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) ∧ (𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ 𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧)) β†’ βˆƒβ„Ž ∈ 𝐹 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})))
55543exp 1117 . . . . 5 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ ((𝑔 ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ∧ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))) β†’ (𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧) β†’ βˆƒβ„Ž ∈ 𝐹 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})))))
5655rexlimdvv 3208 . . . 4 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ (βˆƒπ‘” ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βˆƒπ‘§ ∈ (π‘€β€˜(π‘β€˜{π‘Œ}))𝑑 = ((𝑔( ·𝑠 β€˜πΆ)𝐺)𝑅𝑧) β†’ βˆƒβ„Ž ∈ 𝐹 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)}))))
5729, 56mpd 15 . . 3 ((πœ‘ ∧ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ}))) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑})) β†’ βˆƒβ„Ž ∈ 𝐹 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})))
5857rexlimdv3a 3157 . 2 (πœ‘ β†’ (βˆƒπ‘‘ ∈ ((π‘€β€˜(π‘β€˜{𝑋}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{π‘Œ})))(π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑}) β†’ βˆƒβ„Ž ∈ 𝐹 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)}))))
5915, 58mpd 15 1 (πœ‘ β†’ βˆƒβ„Ž ∈ 𝐹 ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(πΊπ‘…β„Ž)})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆƒwrex 3068   βˆ– cdif 3944  {csn 4627  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  Scalarcsca 17204   ·𝑠 cvsca 17205  0gc0g 17389  -gcsg 18857  LSSumclsm 19543  invrcinvr 20278  LSpanclspn 20726  HLchlt 38523  LHypclh 39158  DVecHcdvh 40252  LCDualclcd 40760  mapdcmpd 40798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-tpos 8213  df-undef 8260  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-sca 17217  df-vsca 17218  df-0g 17391  df-mre 17534  df-mrc 17535  df-acs 17537  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-grp 18858  df-minusg 18859  df-sbg 18860  df-subg 19039  df-cntz 19222  df-oppg 19251  df-lsm 19545  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-oppr 20225  df-dvdsr 20248  df-unit 20249  df-invr 20279  df-dvr 20292  df-drng 20502  df-lmod 20616  df-lss 20687  df-lsp 20727  df-lvec 20858  df-lsatoms 38149  df-lshyp 38150  df-lcv 38192  df-lfl 38231  df-lkr 38259  df-ldual 38297  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279  df-trl 39333  df-tgrp 39917  df-tendo 39929  df-edring 39931  df-dveca 40177  df-disoa 40203  df-dvech 40253  df-dib 40313  df-dic 40347  df-dih 40403  df-doch 40522  df-djh 40569  df-lcdual 40761  df-mapd 40799
This theorem is referenced by:  mapdpg  40880
  Copyright terms: Public domain W3C validator