| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnpw2blenfzo | Structured version Visualization version GIF version | ||
| Description: A positive integer is between 2 to the power of the binary length of the integer minus 1, and 2 to the power of the binary length of the integer. (Contributed by AV, 2-Jun-2020.) |
| Ref | Expression |
|---|---|
| nnpw2blenfzo | ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ((2↑((#b‘𝑁) − 1))..^(2↑(#b‘𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnpw2blen 48542 | . 2 ⊢ (𝑁 ∈ ℕ → ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁)))) | |
| 2 | nnz 12526 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 3 | 2z 12541 | . . . 4 ⊢ 2 ∈ ℤ | |
| 4 | blennnelnn 48538 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) ∈ ℕ) | |
| 5 | nnm1nn0 12459 | . . . . 5 ⊢ ((#b‘𝑁) ∈ ℕ → ((#b‘𝑁) − 1) ∈ ℕ0) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) − 1) ∈ ℕ0) |
| 7 | zexpcl 14017 | . . . 4 ⊢ ((2 ∈ ℤ ∧ ((#b‘𝑁) − 1) ∈ ℕ0) → (2↑((#b‘𝑁) − 1)) ∈ ℤ) | |
| 8 | 3, 6, 7 | sylancr 587 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) ∈ ℤ) |
| 9 | 4 | nnnn0d 12479 | . . . 4 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) ∈ ℕ0) |
| 10 | zexpcl 14017 | . . . 4 ⊢ ((2 ∈ ℤ ∧ (#b‘𝑁) ∈ ℕ0) → (2↑(#b‘𝑁)) ∈ ℤ) | |
| 11 | 3, 9, 10 | sylancr 587 | . . 3 ⊢ (𝑁 ∈ ℕ → (2↑(#b‘𝑁)) ∈ ℤ) |
| 12 | elfzo 13598 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (2↑((#b‘𝑁) − 1)) ∈ ℤ ∧ (2↑(#b‘𝑁)) ∈ ℤ) → (𝑁 ∈ ((2↑((#b‘𝑁) − 1))..^(2↑(#b‘𝑁))) ↔ ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁))))) | |
| 13 | 2, 8, 11, 12 | syl3anc 1373 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ((2↑((#b‘𝑁) − 1))..^(2↑(#b‘𝑁))) ↔ ((2↑((#b‘𝑁) − 1)) ≤ 𝑁 ∧ 𝑁 < (2↑(#b‘𝑁))))) |
| 14 | 1, 13 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ((2↑((#b‘𝑁) − 1))..^(2↑(#b‘𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 1c1 11045 < clt 11184 ≤ cle 11185 − cmin 11381 ℕcn 12162 2c2 12217 ℕ0cn0 12418 ℤcz 12505 ..^cfzo 13591 ↑cexp 14002 #bcblen 48531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-sin 16011 df-cos 16012 df-pi 16014 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19225 df-cmn 19688 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-lp 22999 df-perf 23000 df-cn 23090 df-cnp 23091 df-haus 23178 df-tx 23425 df-hmeo 23618 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-xms 24184 df-ms 24185 df-tms 24186 df-cncf 24747 df-limc 25743 df-dv 25744 df-log 26441 df-cxp 26442 df-logb 26651 df-blen 48532 |
| This theorem is referenced by: nnpw2blenfzo2 48544 nnolog2flm1 48552 |
| Copyright terms: Public domain | W3C validator |