![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gg-iihalf2cn | Structured version Visualization version GIF version |
Description: The second half function is a continuous map. (Contributed by Mario Carneiro, 6-Jun-2014.) Avoid ax-mulf 11189. (Revised by GG, 16-Mar-2025.) |
Ref | Expression |
---|---|
gg-iihalf2cn.1 | ⊢ 𝐽 = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) |
Ref | Expression |
---|---|
gg-iihalf2cn | ⊢ (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | gg-iihalf2cn.1 | . . 3 ⊢ 𝐽 = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) | |
3 | dfii2 24397 | . . 3 ⊢ II = ((topGen‘ran (,)) ↾t (0[,]1)) | |
4 | halfre 12425 | . . . . 5 ⊢ (1 / 2) ∈ ℝ | |
5 | 1re 11213 | . . . . 5 ⊢ 1 ∈ ℝ | |
6 | iccssre 13405 | . . . . 5 ⊢ (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ) | |
7 | 4, 5, 6 | mp2an 690 | . . . 4 ⊢ ((1 / 2)[,]1) ⊆ ℝ |
8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → ((1 / 2)[,]1) ⊆ ℝ) |
9 | unitssre 13475 | . . . 4 ⊢ (0[,]1) ⊆ ℝ | |
10 | 9 | a1i 11 | . . 3 ⊢ (⊤ → (0[,]1) ⊆ ℝ) |
11 | iihalf2 24448 | . . . 4 ⊢ (𝑥 ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − 1) ∈ (0[,]1)) | |
12 | 11 | adantl 482 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ((1 / 2)[,]1)) → ((2 · 𝑥) − 1) ∈ (0[,]1)) |
13 | 1 | cnfldtopon 24298 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
14 | 13 | a1i 11 | . . . 4 ⊢ (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
15 | 2cnd 12289 | . . . . . 6 ⊢ (⊤ → 2 ∈ ℂ) | |
16 | 14, 14, 15 | cnmptc 23165 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 2) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
17 | 14 | cnmptid 23164 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
18 | 1 | mpomulcn 35157 | . . . . . 6 ⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
19 | 18 | a1i 11 | . . . . 5 ⊢ (⊤ → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
20 | oveq12 7417 | . . . . 5 ⊢ ((𝑢 = 2 ∧ 𝑣 = 𝑥) → (𝑢 · 𝑣) = (2 · 𝑥)) | |
21 | 14, 16, 17, 14, 14, 19, 20 | cnmpt12 23170 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (2 · 𝑥)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
22 | 1cnd 11208 | . . . . 5 ⊢ (⊤ → 1 ∈ ℂ) | |
23 | 14, 14, 22 | cnmptc 23165 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
24 | 1 | subcn 24381 | . . . . 5 ⊢ − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
25 | 24 | a1i 11 | . . . 4 ⊢ (⊤ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))) |
26 | 14, 21, 23, 25 | cnmpt12f 23169 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((2 · 𝑥) − 1)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
27 | 1, 2, 3, 8, 10, 12, 26 | cnmptre 24442 | . 2 ⊢ (⊤ → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II)) |
28 | 27 | mptru 1548 | 1 ⊢ (𝑥 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑥) − 1)) ∈ (𝐽 Cn II) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 ⊆ wss 3948 ↦ cmpt 5231 ran crn 5677 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 ℂcc 11107 ℝcr 11108 0cc0 11109 1c1 11110 · cmul 11114 − cmin 11443 / cdiv 11870 2c2 12266 (,)cioo 13323 [,]cicc 13326 ↾t crest 17365 TopOpenctopn 17366 topGenctg 17382 ℂfldccnfld 20943 TopOnctopon 22411 Cn ccn 22727 ×t ctx 23063 IIcii 24390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ioo 13327 df-icc 13330 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-mulg 18950 df-cntz 19180 df-cmn 19649 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-cnfld 20944 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-cn 22730 df-cnp 22731 df-tx 23065 df-hmeo 23258 df-xms 23825 df-ms 23826 df-tms 23827 df-ii 24392 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |