![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapgln2 | Structured version Visualization version GIF version |
Description: g-linear property that will be used for inner product. (Contributed by NM, 14-Jun-2015.) |
Ref | Expression |
---|---|
hdmapgln2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapgln2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapgln2.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapgln2.p | ⊢ + = (+g‘𝑈) |
hdmapgln2.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmapgln2.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmapgln2.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmapgln2.q | ⊢ ⨣ = (+g‘𝑅) |
hdmapgln2.m | ⊢ × = (.r‘𝑅) |
hdmapgln2.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapgln2.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hdmapgln2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapgln2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hdmapgln2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
hdmapgln2.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
hdmapgln2.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
hdmapgln2 | ⊢ (𝜑 → ((𝑆‘((𝐴 · 𝑌) + 𝑍))‘𝑋) = ((((𝑆‘𝑌)‘𝑋) × (𝐺‘𝐴)) ⨣ ((𝑆‘𝑍)‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapgln2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmapgln2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmapgln2.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmapgln2.p | . . 3 ⊢ + = (+g‘𝑈) | |
5 | hdmapgln2.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hdmapgln2.q | . . 3 ⊢ ⨣ = (+g‘𝑅) | |
7 | hdmapgln2.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
8 | hdmapgln2.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | hdmapgln2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
10 | 1, 2, 8 | dvhlmod 37248 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
11 | hdmapgln2.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
12 | hdmapgln2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
13 | hdmapgln2.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
14 | hdmapgln2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
15 | 3, 5, 13, 14 | lmodvscl 19272 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → (𝐴 · 𝑌) ∈ 𝑉) |
16 | 10, 11, 12, 15 | syl3anc 1439 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝑉) |
17 | hdmapgln2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17 | hdmaplna2 38048 | . 2 ⊢ (𝜑 → ((𝑆‘((𝐴 · 𝑌) + 𝑍))‘𝑋) = (((𝑆‘(𝐴 · 𝑌))‘𝑋) ⨣ ((𝑆‘𝑍)‘𝑋))) |
19 | hdmapgln2.m | . . . 4 ⊢ × = (.r‘𝑅) | |
20 | hdmapgln2.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
21 | 1, 2, 3, 13, 5, 14, 19, 7, 20, 8, 9, 12, 11 | hdmapglnm2 38049 | . . 3 ⊢ (𝜑 → ((𝑆‘(𝐴 · 𝑌))‘𝑋) = (((𝑆‘𝑌)‘𝑋) × (𝐺‘𝐴))) |
22 | 21 | oveq1d 6937 | . 2 ⊢ (𝜑 → (((𝑆‘(𝐴 · 𝑌))‘𝑋) ⨣ ((𝑆‘𝑍)‘𝑋)) = ((((𝑆‘𝑌)‘𝑋) × (𝐺‘𝐴)) ⨣ ((𝑆‘𝑍)‘𝑋))) |
23 | 18, 22 | eqtrd 2813 | 1 ⊢ (𝜑 → ((𝑆‘((𝐴 · 𝑌) + 𝑍))‘𝑋) = ((((𝑆‘𝑌)‘𝑋) × (𝐺‘𝐴)) ⨣ ((𝑆‘𝑍)‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 +gcplusg 16338 .rcmulr 16339 Scalarcsca 16341 ·𝑠 cvsca 16342 LModclmod 19255 HLchlt 35488 LHypclh 36122 DVecHcdvh 37216 HDMapchdma 37930 HGMapchg 38021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-riotaBAD 35091 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-ot 4406 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-tpos 7634 df-undef 7681 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-0g 16488 df-mre 16632 df-mrc 16633 df-acs 16635 df-proset 17314 df-poset 17332 df-plt 17344 df-lub 17360 df-glb 17361 df-join 17362 df-meet 17363 df-p0 17425 df-p1 17426 df-lat 17432 df-clat 17494 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-grp 17812 df-minusg 17813 df-sbg 17814 df-subg 17975 df-cntz 18133 df-oppg 18159 df-lsm 18435 df-cmn 18581 df-abl 18582 df-mgp 18877 df-ur 18889 df-ring 18936 df-oppr 19010 df-dvdsr 19028 df-unit 19029 df-invr 19059 df-dvr 19070 df-drng 19141 df-lmod 19257 df-lss 19325 df-lsp 19367 df-lvec 19498 df-lsatoms 35114 df-lshyp 35115 df-lcv 35157 df-lfl 35196 df-lkr 35224 df-ldual 35262 df-oposet 35314 df-ol 35316 df-oml 35317 df-covers 35404 df-ats 35405 df-atl 35436 df-cvlat 35460 df-hlat 35489 df-llines 35636 df-lplanes 35637 df-lvols 35638 df-lines 35639 df-psubsp 35641 df-pmap 35642 df-padd 35934 df-lhyp 36126 df-laut 36127 df-ldil 36242 df-ltrn 36243 df-trl 36297 df-tgrp 36881 df-tendo 36893 df-edring 36895 df-dveca 37141 df-disoa 37167 df-dvech 37217 df-dib 37277 df-dic 37311 df-dih 37367 df-doch 37486 df-djh 37533 df-lcdual 37725 df-mapd 37763 df-hvmap 37895 df-hdmap1 37931 df-hdmap 37932 df-hgmap 38022 |
This theorem is referenced by: hdmapglem7b 38066 |
Copyright terms: Public domain | W3C validator |