Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaplna2 Structured version   Visualization version   GIF version

Theorem hdmaplna2 38059
 Description: Additive property of second (inner product) argument. (Contributed by NM, 10-Jun-2015.)
Hypotheses
Ref Expression
hdmaplna2.h 𝐻 = (LHyp‘𝐾)
hdmaplna2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaplna2.v 𝑉 = (Base‘𝑈)
hdmaplna2.p + = (+g𝑈)
hdmaplna2.r 𝑅 = (Scalar‘𝑈)
hdmaplna2.q = (+g𝑅)
hdmaplna2.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaplna2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaplna2.x (𝜑𝑋𝑉)
hdmaplna2.y (𝜑𝑌𝑉)
hdmaplna2.z (𝜑𝑍𝑉)
Assertion
Ref Expression
hdmaplna2 (𝜑 → ((𝑆‘(𝑌 + 𝑍))‘𝑋) = (((𝑆𝑌)‘𝑋) ((𝑆𝑍)‘𝑋)))

Proof of Theorem hdmaplna2
StepHypRef Expression
1 hdmaplna2.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmaplna2.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmaplna2.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmaplna2.p . . . 4 + = (+g𝑈)
5 eqid 2777 . . . 4 ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊)
6 eqid 2777 . . . 4 (+g‘((LCDual‘𝐾)‘𝑊)) = (+g‘((LCDual‘𝐾)‘𝑊))
7 hdmaplna2.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
8 hdmaplna2.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 hdmaplna2.y . . . 4 (𝜑𝑌𝑉)
10 hdmaplna2.z . . . 4 (𝜑𝑍𝑉)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10hdmapadd 37992 . . 3 (𝜑 → (𝑆‘(𝑌 + 𝑍)) = ((𝑆𝑌)(+g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑍)))
1211fveq1d 6448 . 2 (𝜑 → ((𝑆‘(𝑌 + 𝑍))‘𝑋) = (((𝑆𝑌)(+g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑍))‘𝑋))
13 hdmaplna2.r . . 3 𝑅 = (Scalar‘𝑈)
14 hdmaplna2.q . . 3 = (+g𝑅)
15 eqid 2777 . . 3 (Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊))
161, 2, 3, 5, 15, 7, 8, 9hdmapcl 37979 . . 3 (𝜑 → (𝑆𝑌) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))
171, 2, 3, 5, 15, 7, 8, 10hdmapcl 37979 . . 3 (𝜑 → (𝑆𝑍) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))
18 hdmaplna2.x . . 3 (𝜑𝑋𝑉)
191, 2, 3, 13, 14, 5, 15, 6, 8, 16, 17, 18lcdvaddval 37747 . 2 (𝜑 → (((𝑆𝑌)(+g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑍))‘𝑋) = (((𝑆𝑌)‘𝑋) ((𝑆𝑍)‘𝑋)))
2012, 19eqtrd 2813 1 (𝜑 → ((𝑆‘(𝑌 + 𝑍))‘𝑋) = (((𝑆𝑌)‘𝑋) ((𝑆𝑍)‘𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1601   ∈ wcel 2106  ‘cfv 6135  (class class class)co 6922  Basecbs 16255  +gcplusg 16338  Scalarcsca 16341  HLchlt 35499  LHypclh 36133  DVecHcdvh 37227  LCDualclcd 37735  HDMapchdma 37941 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-riotaBAD 35102 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-ot 4406  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-undef 7681  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-0g 16488  df-mre 16632  df-mrc 16633  df-acs 16635  df-proset 17314  df-poset 17332  df-plt 17344  df-lub 17360  df-glb 17361  df-join 17362  df-meet 17363  df-p0 17425  df-p1 17426  df-lat 17432  df-clat 17494  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-cntz 18133  df-oppg 18159  df-lsm 18435  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-drng 19141  df-lmod 19257  df-lss 19325  df-lsp 19367  df-lvec 19498  df-lsatoms 35125  df-lshyp 35126  df-lcv 35168  df-lfl 35207  df-lkr 35235  df-ldual 35273  df-oposet 35325  df-ol 35327  df-oml 35328  df-covers 35415  df-ats 35416  df-atl 35447  df-cvlat 35471  df-hlat 35500  df-llines 35647  df-lplanes 35648  df-lvols 35649  df-lines 35650  df-psubsp 35652  df-pmap 35653  df-padd 35945  df-lhyp 36137  df-laut 36138  df-ldil 36253  df-ltrn 36254  df-trl 36308  df-tgrp 36892  df-tendo 36904  df-edring 36906  df-dveca 37152  df-disoa 37178  df-dvech 37228  df-dib 37288  df-dic 37322  df-dih 37378  df-doch 37497  df-djh 37544  df-lcdual 37736  df-mapd 37774  df-hvmap 37906  df-hdmap1 37942  df-hdmap 37943 This theorem is referenced by:  hdmapgln2  38061  hdmapinvlem4  38070
 Copyright terms: Public domain W3C validator