Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaplna2 Structured version   Visualization version   GIF version

Theorem hdmaplna2 41893
Description: Additive property of second (inner product) argument. (Contributed by NM, 10-Jun-2015.)
Hypotheses
Ref Expression
hdmaplna2.h 𝐻 = (LHyp‘𝐾)
hdmaplna2.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmaplna2.v 𝑉 = (Base‘𝑈)
hdmaplna2.p + = (+g𝑈)
hdmaplna2.r 𝑅 = (Scalar‘𝑈)
hdmaplna2.q = (+g𝑅)
hdmaplna2.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmaplna2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmaplna2.x (𝜑𝑋𝑉)
hdmaplna2.y (𝜑𝑌𝑉)
hdmaplna2.z (𝜑𝑍𝑉)
Assertion
Ref Expression
hdmaplna2 (𝜑 → ((𝑆‘(𝑌 + 𝑍))‘𝑋) = (((𝑆𝑌)‘𝑋) ((𝑆𝑍)‘𝑋)))

Proof of Theorem hdmaplna2
StepHypRef Expression
1 hdmaplna2.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmaplna2.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmaplna2.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmaplna2.p . . . 4 + = (+g𝑈)
5 eqid 2729 . . . 4 ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊)
6 eqid 2729 . . . 4 (+g‘((LCDual‘𝐾)‘𝑊)) = (+g‘((LCDual‘𝐾)‘𝑊))
7 hdmaplna2.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
8 hdmaplna2.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 hdmaplna2.y . . . 4 (𝜑𝑌𝑉)
10 hdmaplna2.z . . . 4 (𝜑𝑍𝑉)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10hdmapadd 41826 . . 3 (𝜑 → (𝑆‘(𝑌 + 𝑍)) = ((𝑆𝑌)(+g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑍)))
1211fveq1d 6824 . 2 (𝜑 → ((𝑆‘(𝑌 + 𝑍))‘𝑋) = (((𝑆𝑌)(+g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑍))‘𝑋))
13 hdmaplna2.r . . 3 𝑅 = (Scalar‘𝑈)
14 hdmaplna2.q . . 3 = (+g𝑅)
15 eqid 2729 . . 3 (Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊))
161, 2, 3, 5, 15, 7, 8, 9hdmapcl 41813 . . 3 (𝜑 → (𝑆𝑌) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))
171, 2, 3, 5, 15, 7, 8, 10hdmapcl 41813 . . 3 (𝜑 → (𝑆𝑍) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))
18 hdmaplna2.x . . 3 (𝜑𝑋𝑉)
191, 2, 3, 13, 14, 5, 15, 6, 8, 16, 17, 18lcdvaddval 41581 . 2 (𝜑 → (((𝑆𝑌)(+g‘((LCDual‘𝐾)‘𝑊))(𝑆𝑍))‘𝑋) = (((𝑆𝑌)‘𝑋) ((𝑆𝑍)‘𝑋)))
2012, 19eqtrd 2764 1 (𝜑 → ((𝑆‘(𝑌 + 𝑍))‘𝑋) = (((𝑆𝑌)‘𝑋) ((𝑆𝑍)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164  HLchlt 39333  LHypclh 39967  DVecHcdvh 41061  LCDualclcd 41569  HDMapchdma 41775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-riotaBAD 38936
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-undef 8206  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-oppg 19225  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-nzr 20398  df-rlreg 20579  df-domn 20580  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007  df-lsatoms 38959  df-lshyp 38960  df-lcv 39002  df-lfl 39041  df-lkr 39069  df-ldual 39107  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tgrp 40726  df-tendo 40738  df-edring 40740  df-dveca 40986  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212  df-doch 41331  df-djh 41378  df-lcdual 41570  df-mapd 41608  df-hvmap 41740  df-hdmap1 41776  df-hdmap 41777
This theorem is referenced by:  hdmapgln2  41895  hdmapinvlem4  41904
  Copyright terms: Public domain W3C validator