Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh7cN Structured version   Visualization version   GIF version

Theorem mapdh7cN 41736
Description: Part (7) of [Baer] p. 48 line 10 (3 of 6 cases). (Contributed by NM, 2-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh7.h 𝐻 = (LHyp‘𝐾)
mapdh7.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh7.v 𝑉 = (Base‘𝑈)
mapdh7.s = (-g𝑈)
mapdh7.o 0 = (0g𝑈)
mapdh7.n 𝑁 = (LSpan‘𝑈)
mapdh7.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh7.d 𝐷 = (Base‘𝐶)
mapdh7.r 𝑅 = (-g𝐶)
mapdh7.q 𝑄 = (0g𝐶)
mapdh7.j 𝐽 = (LSpan‘𝐶)
mapdh7.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh7.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh7.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh7.f (𝜑𝐹𝐷)
mapdh7.mn (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐽‘{𝐹}))
mapdh7.x (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
mapdh7.y (𝜑𝑣 ∈ (𝑉 ∖ { 0 }))
mapdh7.z (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh7.ne (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑣}))
mapdh7.wn (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑢, 𝑣}))
mapdh7a (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑣⟩) = 𝐺)
Assertion
Ref Expression
mapdh7cN (𝜑 → (𝐼‘⟨𝑣, 𝐺, 𝑢⟩) = 𝐹)
Distinct variable groups:   𝑥,,   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐺,𝑥   0 ,,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑥,𝑄   𝑢,,𝑣,𝑤,𝑥   𝑅,,𝑥   𝑈,
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑢)   𝐶(𝑥,𝑤,𝑣,𝑢)   𝐷(𝑤,𝑣,𝑢)   𝑄(𝑤,𝑣,𝑢,)   𝑅(𝑤,𝑣,𝑢)   𝑈(𝑥,𝑤,𝑣,𝑢)   𝐹(𝑤,𝑣,𝑢)   𝐺(𝑤,𝑣,𝑢)   𝐻(𝑥,𝑤,𝑣,𝑢,)   𝐼(𝑥,𝑤,𝑣,𝑢,)   𝐽(𝑤,𝑣,𝑢)   𝐾(𝑥,𝑤,𝑣,𝑢,)   𝑀(𝑤,𝑣,𝑢)   (𝑤,𝑣,𝑢)   𝑁(𝑤,𝑣,𝑢)   𝑉(𝑥,𝑤,𝑣,𝑢,)   𝑊(𝑥,𝑤,𝑣,𝑢,)   0 (𝑤,𝑣,𝑢)

Proof of Theorem mapdh7cN
StepHypRef Expression
1 mapdh7a . 2 (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑣⟩) = 𝐺)
2 mapdh7.q . . 3 𝑄 = (0g𝐶)
3 mapdh7.i . . 3 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
4 mapdh7.h . . 3 𝐻 = (LHyp‘𝐾)
5 mapdh7.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
6 mapdh7.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 mapdh7.v . . 3 𝑉 = (Base‘𝑈)
8 mapdh7.s . . 3 = (-g𝑈)
9 mapdh7.o . . 3 0 = (0g𝑈)
10 mapdh7.n . . 3 𝑁 = (LSpan‘𝑈)
11 mapdh7.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
12 mapdh7.d . . 3 𝐷 = (Base‘𝐶)
13 mapdh7.r . . 3 𝑅 = (-g𝐶)
14 mapdh7.j . . 3 𝐽 = (LSpan‘𝐶)
15 mapdh7.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh7.f . . 3 (𝜑𝐹𝐷)
17 mapdh7.mn . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑢})) = (𝐽‘{𝐹}))
18 mapdh7.x . . 3 (𝜑𝑢 ∈ (𝑉 ∖ { 0 }))
19 mapdh7.y . . 3 (𝜑𝑣 ∈ (𝑉 ∖ { 0 }))
2019eldifad 3923 . . . . 5 (𝜑𝑣𝑉)
21 mapdh7.ne . . . . 5 (𝜑 → (𝑁‘{𝑢}) ≠ (𝑁‘{𝑣}))
222, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21mapdhcl 41714 . . . 4 (𝜑 → (𝐼‘⟨𝑢, 𝐹, 𝑣⟩) ∈ 𝐷)
231, 22eqeltrrd 2829 . . 3 (𝜑𝐺𝐷)
242, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 23, 21mapdheq2 41716 . 2 (𝜑 → ((𝐼‘⟨𝑢, 𝐹, 𝑣⟩) = 𝐺 → (𝐼‘⟨𝑣, 𝐺, 𝑢⟩) = 𝐹))
251, 24mpd 15 1 (𝜑 → (𝐼‘⟨𝑣, 𝐺, 𝑢⟩) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  ifcif 4484  {csn 4585  {cpr 4587  cotp 4593  cmpt 5183  cfv 6499  crio 7325  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  0gc0g 17378  -gcsg 18849  LSpanclspn 20909  HLchlt 39336  LHypclh 39971  DVecHcdvh 41065  LCDualclcd 41573  mapdcmpd 41611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-riotaBAD 38939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-undef 8229  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17380  df-mre 17523  df-mrc 17524  df-acs 17526  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-cntz 19231  df-oppg 19260  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-nzr 20433  df-rlreg 20614  df-domn 20615  df-drng 20651  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lvec 21042  df-lsatoms 38962  df-lshyp 38963  df-lcv 39005  df-lfl 39044  df-lkr 39072  df-ldual 39110  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486  df-lvols 39487  df-lines 39488  df-psubsp 39490  df-pmap 39491  df-padd 39783  df-lhyp 39975  df-laut 39976  df-ldil 40091  df-ltrn 40092  df-trl 40146  df-tgrp 40730  df-tendo 40742  df-edring 40744  df-dveca 40990  df-disoa 41016  df-dvech 41066  df-dib 41126  df-dic 41160  df-dih 41216  df-doch 41335  df-djh 41382  df-lcdual 41574  df-mapd 41612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator