| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > assarrginv | Structured version Visualization version GIF version | ||
| Description: If an element 𝑋 of an associative algebra 𝐴 over a division ring 𝐾 is regular, then it is a unit. Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| assarrginv.1 | ⊢ 𝐸 = (RLReg‘𝐴) |
| assarrginv.2 | ⊢ 𝑈 = (Unit‘𝐴) |
| assarrginv.3 | ⊢ 𝐾 = (Scalar‘𝐴) |
| assarrginv.4 | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
| assarrginv.5 | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| assarrginv.6 | ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) |
| assarrginv.7 | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| Ref | Expression |
|---|---|
| assarrginv | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 2 | eqid 2736 | . . . 4 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
| 3 | eqid 2736 | . . . 4 ⊢ (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) = (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) | |
| 4 | assarrginv.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 5 | assarrginv.1 | . . . 4 ⊢ 𝐸 = (RLReg‘𝐴) | |
| 6 | assarrginv.3 | . . . 4 ⊢ 𝐾 = (Scalar‘𝐴) | |
| 7 | assarrginv.5 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 8 | assarrginv.6 | . . . 4 ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) | |
| 9 | assarrginv.7 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | assalactf1o 33680 | . . 3 ⊢ (𝜑 → (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)):(Base‘𝐴)–1-1-onto→(Base‘𝐴)) |
| 11 | eqid 2736 | . . . . 5 ⊢ (mulGrp‘𝐴) = (mulGrp‘𝐴) | |
| 12 | 11, 1 | mgpbas 20110 | . . . 4 ⊢ (Base‘𝐴) = (Base‘(mulGrp‘𝐴)) |
| 13 | eqid 2736 | . . . . 5 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 14 | 11, 13 | ringidval 20148 | . . . 4 ⊢ (1r‘𝐴) = (0g‘(mulGrp‘𝐴)) |
| 15 | 11, 2 | mgpplusg 20109 | . . . 4 ⊢ (.r‘𝐴) = (+g‘(mulGrp‘𝐴)) |
| 16 | oveq2 7418 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝑋(.r‘𝐴)𝑎) = (𝑋(.r‘𝐴)𝑏)) | |
| 17 | 16 | cbvmptv 5230 | . . . 4 ⊢ (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) = (𝑏 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑏)) |
| 18 | assaring 21826 | . . . . . 6 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
| 19 | 4, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Ring) |
| 20 | 11 | ringmgp 20204 | . . . . 5 ⊢ (𝐴 ∈ Ring → (mulGrp‘𝐴) ∈ Mnd) |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝐴) ∈ Mnd) |
| 22 | 5, 1 | rrgss 20667 | . . . . 5 ⊢ 𝐸 ⊆ (Base‘𝐴) |
| 23 | 22, 9 | sselid 3961 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
| 24 | 12, 14, 15, 17, 21, 23 | mndlactf1o 33030 | . . 3 ⊢ (𝜑 → ((𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)):(Base‘𝐴)–1-1-onto→(Base‘𝐴) ↔ ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴)))) |
| 25 | 10, 24 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴))) |
| 26 | assarrginv.2 | . . 3 ⊢ 𝑈 = (Unit‘𝐴) | |
| 27 | 1, 26, 2, 13, 23, 19 | isunit3 33241 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴)))) |
| 28 | 25, 27 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ↦ cmpt 5206 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 ℕ0cn0 12506 Basecbs 17233 .rcmulr 17277 Scalarcsca 17279 Mndcmnd 18717 mulGrpcmgp 20105 1rcur 20146 Ringcrg 20198 Unitcui 20320 RLRegcrlreg 20656 DivRingcdr 20694 AssAlgcasa 21815 dimcldim 33643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-reg 9611 ax-inf2 9660 ax-ac2 10482 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-rpss 7722 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-r1 9783 df-rank 9784 df-dju 9920 df-card 9958 df-acn 9961 df-ac 10135 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-dec 12714 df-uz 12858 df-xadd 13134 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ocomp 17297 df-ds 17298 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mre 17603 df-mrc 17604 df-mri 17605 df-acs 17606 df-proset 18311 df-drs 18312 df-poset 18330 df-ipo 18543 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-nzr 20478 df-subrg 20535 df-rlreg 20659 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lmhm 20985 df-lmim 20986 df-lbs 21038 df-lvec 21066 df-sra 21136 df-rgmod 21137 df-dsmm 21697 df-frlm 21712 df-uvc 21748 df-lindf 21771 df-linds 21772 df-assa 21818 df-dim 33644 |
| This theorem is referenced by: assafld 33682 |
| Copyright terms: Public domain | W3C validator |