| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > assarrginv | Structured version Visualization version GIF version | ||
| Description: If an element 𝑋 of an associative algebra 𝐴 over a division ring 𝐾 is regular, then it is a unit. Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| assarrginv.1 | ⊢ 𝐸 = (RLReg‘𝐴) |
| assarrginv.2 | ⊢ 𝑈 = (Unit‘𝐴) |
| assarrginv.3 | ⊢ 𝐾 = (Scalar‘𝐴) |
| assarrginv.4 | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
| assarrginv.5 | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| assarrginv.6 | ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) |
| assarrginv.7 | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| Ref | Expression |
|---|---|
| assarrginv | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 2 | eqid 2730 | . . . 4 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
| 3 | eqid 2730 | . . . 4 ⊢ (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) = (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) | |
| 4 | assarrginv.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 5 | assarrginv.1 | . . . 4 ⊢ 𝐸 = (RLReg‘𝐴) | |
| 6 | assarrginv.3 | . . . 4 ⊢ 𝐾 = (Scalar‘𝐴) | |
| 7 | assarrginv.5 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 8 | assarrginv.6 | . . . 4 ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) | |
| 9 | assarrginv.7 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | assalactf1o 33638 | . . 3 ⊢ (𝜑 → (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)):(Base‘𝐴)–1-1-onto→(Base‘𝐴)) |
| 11 | eqid 2730 | . . . . 5 ⊢ (mulGrp‘𝐴) = (mulGrp‘𝐴) | |
| 12 | 11, 1 | mgpbas 20056 | . . . 4 ⊢ (Base‘𝐴) = (Base‘(mulGrp‘𝐴)) |
| 13 | eqid 2730 | . . . . 5 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 14 | 11, 13 | ringidval 20094 | . . . 4 ⊢ (1r‘𝐴) = (0g‘(mulGrp‘𝐴)) |
| 15 | 11, 2 | mgpplusg 20055 | . . . 4 ⊢ (.r‘𝐴) = (+g‘(mulGrp‘𝐴)) |
| 16 | oveq2 7349 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝑋(.r‘𝐴)𝑎) = (𝑋(.r‘𝐴)𝑏)) | |
| 17 | 16 | cbvmptv 5193 | . . . 4 ⊢ (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) = (𝑏 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑏)) |
| 18 | assaring 21791 | . . . . . 6 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
| 19 | 4, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Ring) |
| 20 | 11 | ringmgp 20150 | . . . . 5 ⊢ (𝐴 ∈ Ring → (mulGrp‘𝐴) ∈ Mnd) |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝐴) ∈ Mnd) |
| 22 | 5, 1 | rrgss 20610 | . . . . 5 ⊢ 𝐸 ⊆ (Base‘𝐴) |
| 23 | 22, 9 | sselid 3930 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
| 24 | 12, 14, 15, 17, 21, 23 | mndlactf1o 33001 | . . 3 ⊢ (𝜑 → ((𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)):(Base‘𝐴)–1-1-onto→(Base‘𝐴) ↔ ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴)))) |
| 25 | 10, 24 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴))) |
| 26 | assarrginv.2 | . . 3 ⊢ 𝑈 = (Unit‘𝐴) | |
| 27 | 1, 26, 2, 13, 23, 19 | isunit3 33198 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴)))) |
| 28 | 25, 27 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 ↦ cmpt 5170 –1-1-onto→wf1o 6476 ‘cfv 6477 (class class class)co 7341 ℕ0cn0 12373 Basecbs 17112 .rcmulr 17154 Scalarcsca 17156 Mndcmnd 18634 mulGrpcmgp 20051 1rcur 20092 Ringcrg 20144 Unitcui 20266 RLRegcrlreg 20599 DivRingcdr 20637 AssAlgcasa 21780 dimcldim 33601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-reg 9473 ax-inf2 9526 ax-ac2 10346 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-rpss 7651 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-r1 9649 df-rank 9650 df-dju 9786 df-card 9824 df-acn 9827 df-ac 9999 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-xnn0 12447 df-z 12461 df-dec 12581 df-uz 12725 df-xadd 13004 df-fz 13400 df-fzo 13547 df-seq 13901 df-hash 14230 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ocomp 17174 df-ds 17175 df-hom 17177 df-cco 17178 df-0g 17337 df-gsum 17338 df-prds 17343 df-pws 17345 df-mre 17480 df-mrc 17481 df-mri 17482 df-acs 17483 df-proset 18192 df-drs 18193 df-poset 18211 df-ipo 18426 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-ghm 19118 df-cntz 19222 df-lsm 19541 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-nzr 20421 df-subrg 20478 df-rlreg 20602 df-drng 20639 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lmhm 20949 df-lmim 20950 df-lbs 21002 df-lvec 21030 df-sra 21100 df-rgmod 21101 df-dsmm 21662 df-frlm 21677 df-uvc 21713 df-lindf 21736 df-linds 21737 df-assa 21783 df-dim 33602 |
| This theorem is referenced by: assafld 33640 |
| Copyright terms: Public domain | W3C validator |