| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > assarrginv | Structured version Visualization version GIF version | ||
| Description: If an element 𝑋 of an associative algebra 𝐴 over a division ring 𝐾 is regular, then it is a unit. Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| assarrginv.1 | ⊢ 𝐸 = (RLReg‘𝐴) |
| assarrginv.2 | ⊢ 𝑈 = (Unit‘𝐴) |
| assarrginv.3 | ⊢ 𝐾 = (Scalar‘𝐴) |
| assarrginv.4 | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
| assarrginv.5 | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| assarrginv.6 | ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) |
| assarrginv.7 | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| Ref | Expression |
|---|---|
| assarrginv | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 2 | eqid 2737 | . . . 4 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
| 3 | eqid 2737 | . . . 4 ⊢ (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) = (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) | |
| 4 | assarrginv.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 5 | assarrginv.1 | . . . 4 ⊢ 𝐸 = (RLReg‘𝐴) | |
| 6 | assarrginv.3 | . . . 4 ⊢ 𝐾 = (Scalar‘𝐴) | |
| 7 | assarrginv.5 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 8 | assarrginv.6 | . . . 4 ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) | |
| 9 | assarrginv.7 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | assalactf1o 33686 | . . 3 ⊢ (𝜑 → (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)):(Base‘𝐴)–1-1-onto→(Base‘𝐴)) |
| 11 | eqid 2737 | . . . . 5 ⊢ (mulGrp‘𝐴) = (mulGrp‘𝐴) | |
| 12 | 11, 1 | mgpbas 20142 | . . . 4 ⊢ (Base‘𝐴) = (Base‘(mulGrp‘𝐴)) |
| 13 | eqid 2737 | . . . . 5 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 14 | 11, 13 | ringidval 20180 | . . . 4 ⊢ (1r‘𝐴) = (0g‘(mulGrp‘𝐴)) |
| 15 | 11, 2 | mgpplusg 20141 | . . . 4 ⊢ (.r‘𝐴) = (+g‘(mulGrp‘𝐴)) |
| 16 | oveq2 7439 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝑋(.r‘𝐴)𝑎) = (𝑋(.r‘𝐴)𝑏)) | |
| 17 | 16 | cbvmptv 5255 | . . . 4 ⊢ (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) = (𝑏 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑏)) |
| 18 | assaring 21881 | . . . . . 6 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
| 19 | 4, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Ring) |
| 20 | 11 | ringmgp 20236 | . . . . 5 ⊢ (𝐴 ∈ Ring → (mulGrp‘𝐴) ∈ Mnd) |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝐴) ∈ Mnd) |
| 22 | 5, 1 | rrgss 20702 | . . . . 5 ⊢ 𝐸 ⊆ (Base‘𝐴) |
| 23 | 22, 9 | sselid 3981 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
| 24 | 12, 14, 15, 17, 21, 23 | mndlactf1o 33035 | . . 3 ⊢ (𝜑 → ((𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)):(Base‘𝐴)–1-1-onto→(Base‘𝐴) ↔ ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴)))) |
| 25 | 10, 24 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴))) |
| 26 | assarrginv.2 | . . 3 ⊢ 𝑈 = (Unit‘𝐴) | |
| 27 | 1, 26, 2, 13, 23, 19 | isunit3 33245 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴)))) |
| 28 | 25, 27 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ↦ cmpt 5225 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 ℕ0cn0 12526 Basecbs 17247 .rcmulr 17298 Scalarcsca 17300 Mndcmnd 18747 mulGrpcmgp 20137 1rcur 20178 Ringcrg 20230 Unitcui 20355 RLRegcrlreg 20691 DivRingcdr 20729 AssAlgcasa 21870 dimcldim 33649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 ax-ac2 10503 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-rpss 7743 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-r1 9804 df-rank 9805 df-dju 9941 df-card 9979 df-acn 9982 df-ac 10156 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-dec 12734 df-uz 12879 df-xadd 13155 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ocomp 17318 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-mri 17631 df-acs 17632 df-proset 18340 df-drs 18341 df-poset 18359 df-ipo 18573 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-nzr 20513 df-subrg 20570 df-rlreg 20694 df-drng 20731 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lmhm 21021 df-lmim 21022 df-lbs 21074 df-lvec 21102 df-sra 21172 df-rgmod 21173 df-dsmm 21752 df-frlm 21767 df-uvc 21803 df-lindf 21826 df-linds 21827 df-assa 21873 df-dim 33650 |
| This theorem is referenced by: assafld 33688 |
| Copyright terms: Public domain | W3C validator |