![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > assarrginv | Structured version Visualization version GIF version |
Description: If an element 𝑋 of an associative algebra 𝐴 over a division ring 𝐾 is regular, then it is a unit. Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
Ref | Expression |
---|---|
assarrginv.1 | ⊢ 𝐸 = (RLReg‘𝐴) |
assarrginv.2 | ⊢ 𝑈 = (Unit‘𝐴) |
assarrginv.3 | ⊢ 𝐾 = (Scalar‘𝐴) |
assarrginv.4 | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
assarrginv.5 | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
assarrginv.6 | ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) |
assarrginv.7 | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
Ref | Expression |
---|---|
assarrginv | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
2 | eqid 2735 | . . . 4 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
3 | eqid 2735 | . . . 4 ⊢ (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) = (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) | |
4 | assarrginv.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
5 | assarrginv.1 | . . . 4 ⊢ 𝐸 = (RLReg‘𝐴) | |
6 | assarrginv.3 | . . . 4 ⊢ 𝐾 = (Scalar‘𝐴) | |
7 | assarrginv.5 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
8 | assarrginv.6 | . . . 4 ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) | |
9 | assarrginv.7 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | assalactf1o 33663 | . . 3 ⊢ (𝜑 → (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)):(Base‘𝐴)–1-1-onto→(Base‘𝐴)) |
11 | eqid 2735 | . . . . 5 ⊢ (mulGrp‘𝐴) = (mulGrp‘𝐴) | |
12 | 11, 1 | mgpbas 20158 | . . . 4 ⊢ (Base‘𝐴) = (Base‘(mulGrp‘𝐴)) |
13 | eqid 2735 | . . . . 5 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
14 | 11, 13 | ringidval 20201 | . . . 4 ⊢ (1r‘𝐴) = (0g‘(mulGrp‘𝐴)) |
15 | 11, 2 | mgpplusg 20156 | . . . 4 ⊢ (.r‘𝐴) = (+g‘(mulGrp‘𝐴)) |
16 | oveq2 7439 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝑋(.r‘𝐴)𝑎) = (𝑋(.r‘𝐴)𝑏)) | |
17 | 16 | cbvmptv 5261 | . . . 4 ⊢ (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) = (𝑏 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑏)) |
18 | assaring 21899 | . . . . . 6 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
19 | 4, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Ring) |
20 | 11 | ringmgp 20257 | . . . . 5 ⊢ (𝐴 ∈ Ring → (mulGrp‘𝐴) ∈ Mnd) |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝐴) ∈ Mnd) |
22 | 5, 1 | rrgss 20719 | . . . . 5 ⊢ 𝐸 ⊆ (Base‘𝐴) |
23 | 22, 9 | sselid 3993 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
24 | 12, 14, 15, 17, 21, 23 | mndlactf1o 33018 | . . 3 ⊢ (𝜑 → ((𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)):(Base‘𝐴)–1-1-onto→(Base‘𝐴) ↔ ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴)))) |
25 | 10, 24 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴))) |
26 | assarrginv.2 | . . 3 ⊢ 𝑈 = (Unit‘𝐴) | |
27 | 1, 26, 2, 13, 23, 19 | isunit3 33231 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴)))) |
28 | 25, 27 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ↦ cmpt 5231 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 ℕ0cn0 12524 Basecbs 17245 .rcmulr 17299 Scalarcsca 17301 Mndcmnd 18760 mulGrpcmgp 20152 1rcur 20199 Ringcrg 20251 Unitcui 20372 RLRegcrlreg 20708 DivRingcdr 20746 AssAlgcasa 21888 dimcldim 33626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-reg 9630 ax-inf2 9679 ax-ac2 10501 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-rpss 7742 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-r1 9802 df-rank 9803 df-dju 9939 df-card 9977 df-acn 9980 df-ac 10154 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-xadd 13153 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ocomp 17319 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-mri 17633 df-acs 17634 df-proset 18352 df-drs 18353 df-poset 18371 df-ipo 18586 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-lsm 19669 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-nzr 20530 df-subrg 20587 df-rlreg 20711 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lmhm 21039 df-lmim 21040 df-lbs 21092 df-lvec 21120 df-sra 21190 df-rgmod 21191 df-dsmm 21770 df-frlm 21785 df-uvc 21821 df-lindf 21844 df-linds 21845 df-assa 21891 df-dim 33627 |
This theorem is referenced by: assafld 33665 |
Copyright terms: Public domain | W3C validator |