| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > assarrginv | Structured version Visualization version GIF version | ||
| Description: If an element 𝑋 of an associative algebra 𝐴 over a division ring 𝐾 is regular, then it is a unit. Proposition 2. in Chapter 5. of [BourbakiAlg2] p. 113. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| assarrginv.1 | ⊢ 𝐸 = (RLReg‘𝐴) |
| assarrginv.2 | ⊢ 𝑈 = (Unit‘𝐴) |
| assarrginv.3 | ⊢ 𝐾 = (Scalar‘𝐴) |
| assarrginv.4 | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
| assarrginv.5 | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| assarrginv.6 | ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) |
| assarrginv.7 | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| Ref | Expression |
|---|---|
| assarrginv | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 2 | eqid 2729 | . . . 4 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
| 3 | eqid 2729 | . . . 4 ⊢ (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) = (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) | |
| 4 | assarrginv.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 5 | assarrginv.1 | . . . 4 ⊢ 𝐸 = (RLReg‘𝐴) | |
| 6 | assarrginv.3 | . . . 4 ⊢ 𝐾 = (Scalar‘𝐴) | |
| 7 | assarrginv.5 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 8 | assarrginv.6 | . . . 4 ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) | |
| 9 | assarrginv.7 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | assalactf1o 33631 | . . 3 ⊢ (𝜑 → (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)):(Base‘𝐴)–1-1-onto→(Base‘𝐴)) |
| 11 | eqid 2729 | . . . . 5 ⊢ (mulGrp‘𝐴) = (mulGrp‘𝐴) | |
| 12 | 11, 1 | mgpbas 20054 | . . . 4 ⊢ (Base‘𝐴) = (Base‘(mulGrp‘𝐴)) |
| 13 | eqid 2729 | . . . . 5 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 14 | 11, 13 | ringidval 20092 | . . . 4 ⊢ (1r‘𝐴) = (0g‘(mulGrp‘𝐴)) |
| 15 | 11, 2 | mgpplusg 20053 | . . . 4 ⊢ (.r‘𝐴) = (+g‘(mulGrp‘𝐴)) |
| 16 | oveq2 7395 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝑋(.r‘𝐴)𝑎) = (𝑋(.r‘𝐴)𝑏)) | |
| 17 | 16 | cbvmptv 5211 | . . . 4 ⊢ (𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)) = (𝑏 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑏)) |
| 18 | assaring 21770 | . . . . . 6 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
| 19 | 4, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Ring) |
| 20 | 11 | ringmgp 20148 | . . . . 5 ⊢ (𝐴 ∈ Ring → (mulGrp‘𝐴) ∈ Mnd) |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → (mulGrp‘𝐴) ∈ Mnd) |
| 22 | 5, 1 | rrgss 20611 | . . . . 5 ⊢ 𝐸 ⊆ (Base‘𝐴) |
| 23 | 22, 9 | sselid 3944 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
| 24 | 12, 14, 15, 17, 21, 23 | mndlactf1o 32971 | . . 3 ⊢ (𝜑 → ((𝑎 ∈ (Base‘𝐴) ↦ (𝑋(.r‘𝐴)𝑎)):(Base‘𝐴)–1-1-onto→(Base‘𝐴) ↔ ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴)))) |
| 25 | 10, 24 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴))) |
| 26 | assarrginv.2 | . . 3 ⊢ 𝑈 = (Unit‘𝐴) | |
| 27 | 1, 26, 2, 13, 23, 19 | isunit3 33192 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ ∃𝑧 ∈ (Base‘𝐴)((𝑋(.r‘𝐴)𝑧) = (1r‘𝐴) ∧ (𝑧(.r‘𝐴)𝑋) = (1r‘𝐴)))) |
| 28 | 25, 27 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ↦ cmpt 5188 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ℕ0cn0 12442 Basecbs 17179 .rcmulr 17221 Scalarcsca 17223 Mndcmnd 18661 mulGrpcmgp 20049 1rcur 20090 Ringcrg 20142 Unitcui 20264 RLRegcrlreg 20600 DivRingcdr 20638 AssAlgcasa 21759 dimcldim 33594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-rpss 7699 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-r1 9717 df-rank 9718 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-xadd 13073 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ocomp 17241 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-mri 17549 df-acs 17550 df-proset 18255 df-drs 18256 df-poset 18274 df-ipo 18487 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-nzr 20422 df-subrg 20479 df-rlreg 20603 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lmhm 20929 df-lmim 20930 df-lbs 20982 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-dsmm 21641 df-frlm 21656 df-uvc 21692 df-lindf 21715 df-linds 21716 df-assa 21762 df-dim 33595 |
| This theorem is referenced by: assafld 33633 |
| Copyright terms: Public domain | W3C validator |