Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashscontpow Structured version   Visualization version   GIF version

Theorem hashscontpow 41625
Description: If a set contains all 𝑁-th powers, then the size of the image under the ZR homomorphism is greater than the 𝑅-th order of 𝑁. (Contributed by metakunt, 28-Apr-2025.)
Hypotheses
Ref Expression
hashscontpow.1 (𝜑𝐸 ⊆ ℤ)
hashscontpow.2 (𝜑𝑁 ∈ ℕ)
hashscontpow.3 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑁𝑘) ∈ 𝐸)
hashscontpow.4 (𝜑𝑅 ∈ ℕ)
hashscontpow.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
hashscontpow.6 𝐿 = (ℤRHom‘𝑌)
hashscontpow.7 𝑌 = (ℤ/nℤ‘𝑅)
Assertion
Ref Expression
hashscontpow (𝜑 → ((od𝑅)‘𝑁) ≤ (♯‘(𝐿𝐸)))
Distinct variable groups:   𝑘,𝐸   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝑅(𝑘)   𝐿(𝑘)   𝑌(𝑘)

Proof of Theorem hashscontpow
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashscontpow.4 . . . . 5 (𝜑𝑅 ∈ ℕ)
2 hashscontpow.2 . . . . . 6 (𝜑𝑁 ∈ ℕ)
32nnzd 12623 . . . . 5 (𝜑𝑁 ∈ ℤ)
4 hashscontpow.5 . . . . 5 (𝜑 → (𝑁 gcd 𝑅) = 1)
5 odzcl 16769 . . . . 5 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) ∈ ℕ)
61, 3, 4, 5syl3anc 1368 . . . 4 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ)
76nnnn0d 12570 . . 3 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ0)
8 hashfz1 14345 . . 3 (((od𝑅)‘𝑁) ∈ ℕ0 → (♯‘(1...((od𝑅)‘𝑁))) = ((od𝑅)‘𝑁))
97, 8syl 17 . 2 (𝜑 → (♯‘(1...((od𝑅)‘𝑁))) = ((od𝑅)‘𝑁))
10 ovexd 7461 . . . 4 (𝜑 → (1...((od𝑅)‘𝑁)) ∈ V)
1110mptexd 7242 . . 3 (𝜑 → (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))) ∈ V)
12 hashscontpow.6 . . . . . 6 𝐿 = (ℤRHom‘𝑌)
1312fvexi 6916 . . . . 5 𝐿 ∈ V
1413a1i 11 . . . 4 (𝜑𝐿 ∈ V)
15 imaexg 7927 . . . 4 (𝐿 ∈ V → (𝐿𝐸) ∈ V)
1614, 15syl 17 . . 3 (𝜑 → (𝐿𝐸) ∈ V)
171nnnn0d 12570 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℕ0)
18 hashscontpow.7 . . . . . . . . . . . . . 14 𝑌 = (ℤ/nℤ‘𝑅)
1918zncrng 21485 . . . . . . . . . . . . 13 (𝑅 ∈ ℕ0𝑌 ∈ CRing)
2017, 19syl 17 . . . . . . . . . . . 12 (𝜑𝑌 ∈ CRing)
21 crngring 20192 . . . . . . . . . . . 12 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ Ring)
2312zrhrhm 21444 . . . . . . . . . . 11 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
2422, 23syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
25 zringbas 21386 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
26 eqid 2728 . . . . . . . . . . 11 (Base‘𝑌) = (Base‘𝑌)
2725, 26rhmf 20431 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2824, 27syl 17 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘𝑌))
2928ffnd 6728 . . . . . . . 8 (𝜑𝐿 Fn ℤ)
3029adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → 𝐿 Fn ℤ)
313adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → 𝑁 ∈ ℤ)
32 elfznn 13570 . . . . . . . . . 10 (𝑥 ∈ (1...((od𝑅)‘𝑁)) → 𝑥 ∈ ℕ)
3332adantl 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → 𝑥 ∈ ℕ)
3433nnnn0d 12570 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → 𝑥 ∈ ℕ0)
3531, 34zexpcld 14092 . . . . . . 7 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → (𝑁𝑥) ∈ ℤ)
36 oveq2 7434 . . . . . . . . 9 (𝑘 = 𝑥 → (𝑁𝑘) = (𝑁𝑥))
3736eleq1d 2814 . . . . . . . 8 (𝑘 = 𝑥 → ((𝑁𝑘) ∈ 𝐸 ↔ (𝑁𝑥) ∈ 𝐸))
38 hashscontpow.3 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑁𝑘) ∈ 𝐸)
3938adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → ∀𝑘 ∈ ℕ0 (𝑁𝑘) ∈ 𝐸)
4037, 39, 34rspcdva 3612 . . . . . . 7 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → (𝑁𝑥) ∈ 𝐸)
4130, 35, 40fnfvimad 7252 . . . . . 6 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → (𝐿‘(𝑁𝑥)) ∈ (𝐿𝐸))
4241fmpttd 7130 . . . . 5 (𝜑 → (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))⟶(𝐿𝐸))
432ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑁 ∈ ℕ)
44 simpllr 774 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ (1...((od𝑅)‘𝑁)))
45 simplr 767 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ (1...((od𝑅)‘𝑁)))
461ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑅 ∈ ℕ)
474ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → (𝑁 gcd 𝑅) = 1)
48 simpr 483 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏)
4943, 44, 45, 46, 47, 12, 18, 48hashscontpow1 41624 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))
502ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑁 ∈ ℕ)
51 simplr 767 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑏 ∈ (1...((od𝑅)‘𝑁)))
52 simpllr 774 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑎 ∈ (1...((od𝑅)‘𝑁)))
531ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑅 ∈ ℕ)
544ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → (𝑁 gcd 𝑅) = 1)
55 simpr 483 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑏 < 𝑎)
5650, 51, 52, 53, 54, 12, 18, 55hashscontpow1 41624 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → (𝐿‘(𝑁𝑏)) ≠ (𝐿‘(𝑁𝑎)))
5756necomd 2993 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))
5849, 57jaodan 955 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ (𝑎 < 𝑏𝑏 < 𝑎)) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))
5958ex 411 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → ((𝑎 < 𝑏𝑏 < 𝑎) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏))))
60 biidd 261 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (𝑎 = 𝑏𝑎 = 𝑏))
6160necon3bbid 2975 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏𝑎𝑏))
62 elfzelz 13541 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (1...((od𝑅)‘𝑁)) → 𝑎 ∈ ℤ)
6362adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) → 𝑎 ∈ ℤ)
6463adantr 479 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → 𝑎 ∈ ℤ)
6564zred 12704 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → 𝑎 ∈ ℝ)
66 elfzelz 13541 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (1...((od𝑅)‘𝑁)) → 𝑏 ∈ ℤ)
6766zred 12704 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (1...((od𝑅)‘𝑁)) → 𝑏 ∈ ℝ)
6867adantl 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → 𝑏 ∈ ℝ)
69 lttri2 11334 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎𝑏 ↔ (𝑎 < 𝑏𝑏 < 𝑎)))
7065, 68, 69syl2anc 582 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (𝑎𝑏 ↔ (𝑎 < 𝑏𝑏 < 𝑎)))
7161, 70bitrd 278 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 ↔ (𝑎 < 𝑏𝑏 < 𝑎)))
7271imbi1d 340 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → ((¬ 𝑎 = 𝑏 → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏))) ↔ ((𝑎 < 𝑏𝑏 < 𝑎) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))))
7359, 72mpbird 256 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏))))
7473imp 405 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))
75 eqidd 2729 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))) = (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))))
76 simpr 483 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑎) → 𝑥 = 𝑎)
7776oveq2d 7442 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑎) → (𝑁𝑥) = (𝑁𝑎))
7877fveq2d 6906 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑎) → (𝐿‘(𝑁𝑥)) = (𝐿‘(𝑁𝑎)))
79 simpllr 774 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → 𝑎 ∈ (1...((od𝑅)‘𝑁)))
80 fvexd 6917 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝐿‘(𝑁𝑎)) ∈ V)
8175, 78, 79, 80fvmptd 7017 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = (𝐿‘(𝑁𝑎)))
82 simpr 483 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑏) → 𝑥 = 𝑏)
8382oveq2d 7442 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑏) → (𝑁𝑥) = (𝑁𝑏))
8483fveq2d 6906 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑏) → (𝐿‘(𝑁𝑥)) = (𝐿‘(𝑁𝑏)))
85 simplr 767 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → 𝑏 ∈ (1...((od𝑅)‘𝑁)))
86 fvexd 6917 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝐿‘(𝑁𝑏)) ∈ V)
8775, 84, 85, 86fvmptd 7017 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) = (𝐿‘(𝑁𝑏)))
8881, 87neeq12d 2999 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) ≠ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) ↔ (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏))))
8974, 88mpbird 256 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) ≠ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏))
9089neneqd 2942 . . . . . . . . 9 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ¬ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏))
9190ex 411 . . . . . . . 8 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 → ¬ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏)))
9291con4d 115 . . . . . . 7 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏))
9392ralrimiva 3143 . . . . . 6 ((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) → ∀𝑏 ∈ (1...((od𝑅)‘𝑁))(((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏))
9493ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...((od𝑅)‘𝑁))∀𝑏 ∈ (1...((od𝑅)‘𝑁))(((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏))
9542, 94jca 510 . . . 4 (𝜑 → ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))⟶(𝐿𝐸) ∧ ∀𝑎 ∈ (1...((od𝑅)‘𝑁))∀𝑏 ∈ (1...((od𝑅)‘𝑁))(((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏)))
96 dff13 7271 . . . 4 ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))–1-1→(𝐿𝐸) ↔ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))⟶(𝐿𝐸) ∧ ∀𝑎 ∈ (1...((od𝑅)‘𝑁))∀𝑏 ∈ (1...((od𝑅)‘𝑁))(((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏)))
9795, 96sylibr 233 . . 3 (𝜑 → (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))–1-1→(𝐿𝐸))
98 hashf1dmcdm 14443 . . 3 (((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))) ∈ V ∧ (𝐿𝐸) ∈ V ∧ (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))–1-1→(𝐿𝐸)) → (♯‘(1...((od𝑅)‘𝑁))) ≤ (♯‘(𝐿𝐸)))
9911, 16, 97, 98syl3anc 1368 . 2 (𝜑 → (♯‘(1...((od𝑅)‘𝑁))) ≤ (♯‘(𝐿𝐸)))
1009, 99eqbrtrrd 5176 1 (𝜑 → ((od𝑅)‘𝑁) ≤ (♯‘(𝐿𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2937  wral 3058  Vcvv 3473  wss 3949   class class class wbr 5152  cmpt 5235  cima 5685   Fn wfn 6548  wf 6549  1-1wf1 6550  cfv 6553  (class class class)co 7426  cr 11145  1c1 11147   < clt 11286  cle 11287  cn 12250  0cn0 12510  cz 12596  ...cfz 13524  cexp 14066  chash 14329   gcd cgcd 16476  odcodz 16739  Basecbs 17187  Ringcrg 20180  CRingccrg 20181   RingHom crh 20415  ringczring 21379  ℤRHomczrh 21432  ℤ/nczn 21435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-tpos 8238  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-er 8731  df-ec 8733  df-qs 8737  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-xnn0 12583  df-z 12597  df-dec 12716  df-uz 12861  df-rp 13015  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-dvds 16239  df-gcd 16477  df-prm 16650  df-odz 16741  df-phi 16742  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-0g 17430  df-imas 17497  df-qus 17498  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-mhm 18747  df-grp 18900  df-minusg 18901  df-sbg 18902  df-mulg 19031  df-subg 19085  df-nsg 19086  df-eqg 19087  df-ghm 19175  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-oppr 20280  df-dvdsr 20303  df-rhm 20418  df-subrng 20490  df-subrg 20515  df-lmod 20752  df-lss 20823  df-lsp 20863  df-sra 21065  df-rgmod 21066  df-lidl 21111  df-rsp 21112  df-2idl 21151  df-cnfld 21287  df-zring 21380  df-zrh 21436  df-zn 21439
This theorem is referenced by:  aks6d1c3  41626
  Copyright terms: Public domain W3C validator