Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashscontpow Structured version   Visualization version   GIF version

Theorem hashscontpow 42135
Description: If a set contains all 𝑁-th powers, then the size of the image under the ZR homomorphism is greater than the 𝑅-th order of 𝑁. (Contributed by metakunt, 28-Apr-2025.)
Hypotheses
Ref Expression
hashscontpow.1 (𝜑𝐸 ⊆ ℤ)
hashscontpow.2 (𝜑𝑁 ∈ ℕ)
hashscontpow.3 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑁𝑘) ∈ 𝐸)
hashscontpow.4 (𝜑𝑅 ∈ ℕ)
hashscontpow.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
hashscontpow.6 𝐿 = (ℤRHom‘𝑌)
hashscontpow.7 𝑌 = (ℤ/nℤ‘𝑅)
Assertion
Ref Expression
hashscontpow (𝜑 → ((od𝑅)‘𝑁) ≤ (♯‘(𝐿𝐸)))
Distinct variable groups:   𝑘,𝐸   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝑅(𝑘)   𝐿(𝑘)   𝑌(𝑘)

Proof of Theorem hashscontpow
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashscontpow.4 . . . . 5 (𝜑𝑅 ∈ ℕ)
2 hashscontpow.2 . . . . . 6 (𝜑𝑁 ∈ ℕ)
32nnzd 12615 . . . . 5 (𝜑𝑁 ∈ ℤ)
4 hashscontpow.5 . . . . 5 (𝜑 → (𝑁 gcd 𝑅) = 1)
5 odzcl 16813 . . . . 5 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) ∈ ℕ)
61, 3, 4, 5syl3anc 1373 . . . 4 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ)
76nnnn0d 12562 . . 3 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ0)
8 hashfz1 14364 . . 3 (((od𝑅)‘𝑁) ∈ ℕ0 → (♯‘(1...((od𝑅)‘𝑁))) = ((od𝑅)‘𝑁))
97, 8syl 17 . 2 (𝜑 → (♯‘(1...((od𝑅)‘𝑁))) = ((od𝑅)‘𝑁))
10 ovexd 7440 . . . 4 (𝜑 → (1...((od𝑅)‘𝑁)) ∈ V)
1110mptexd 7216 . . 3 (𝜑 → (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))) ∈ V)
12 hashscontpow.6 . . . . . 6 𝐿 = (ℤRHom‘𝑌)
1312fvexi 6890 . . . . 5 𝐿 ∈ V
1413a1i 11 . . . 4 (𝜑𝐿 ∈ V)
15 imaexg 7909 . . . 4 (𝐿 ∈ V → (𝐿𝐸) ∈ V)
1614, 15syl 17 . . 3 (𝜑 → (𝐿𝐸) ∈ V)
171nnnn0d 12562 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ0)
18 hashscontpow.7 . . . . . . . . . . . 12 𝑌 = (ℤ/nℤ‘𝑅)
1918zncrng 21505 . . . . . . . . . . 11 (𝑅 ∈ ℕ0𝑌 ∈ CRing)
2017, 19syl 17 . . . . . . . . . 10 (𝜑𝑌 ∈ CRing)
21 crngring 20205 . . . . . . . . . 10 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
2212zrhrhm 21472 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
23 zringbas 21414 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
24 eqid 2735 . . . . . . . . . . 11 (Base‘𝑌) = (Base‘𝑌)
2523, 24rhmf 20445 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2620, 21, 22, 254syl 19 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘𝑌))
2726ffnd 6707 . . . . . . . 8 (𝜑𝐿 Fn ℤ)
2827adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → 𝐿 Fn ℤ)
293adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → 𝑁 ∈ ℤ)
30 elfznn 13570 . . . . . . . . . 10 (𝑥 ∈ (1...((od𝑅)‘𝑁)) → 𝑥 ∈ ℕ)
3130adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → 𝑥 ∈ ℕ)
3231nnnn0d 12562 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → 𝑥 ∈ ℕ0)
3329, 32zexpcld 14105 . . . . . . 7 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → (𝑁𝑥) ∈ ℤ)
34 oveq2 7413 . . . . . . . . 9 (𝑘 = 𝑥 → (𝑁𝑘) = (𝑁𝑥))
3534eleq1d 2819 . . . . . . . 8 (𝑘 = 𝑥 → ((𝑁𝑘) ∈ 𝐸 ↔ (𝑁𝑥) ∈ 𝐸))
36 hashscontpow.3 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑁𝑘) ∈ 𝐸)
3736adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → ∀𝑘 ∈ ℕ0 (𝑁𝑘) ∈ 𝐸)
3835, 37, 32rspcdva 3602 . . . . . . 7 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → (𝑁𝑥) ∈ 𝐸)
3928, 33, 38fnfvimad 7226 . . . . . 6 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → (𝐿‘(𝑁𝑥)) ∈ (𝐿𝐸))
4039fmpttd 7105 . . . . 5 (𝜑 → (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))⟶(𝐿𝐸))
412ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑁 ∈ ℕ)
42 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ (1...((od𝑅)‘𝑁)))
43 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ (1...((od𝑅)‘𝑁)))
441ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑅 ∈ ℕ)
454ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → (𝑁 gcd 𝑅) = 1)
46 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏)
4741, 42, 43, 44, 45, 12, 18, 46hashscontpow1 42134 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))
482ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑁 ∈ ℕ)
49 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑏 ∈ (1...((od𝑅)‘𝑁)))
50 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑎 ∈ (1...((od𝑅)‘𝑁)))
511ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑅 ∈ ℕ)
524ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → (𝑁 gcd 𝑅) = 1)
53 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑏 < 𝑎)
5448, 49, 50, 51, 52, 12, 18, 53hashscontpow1 42134 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → (𝐿‘(𝑁𝑏)) ≠ (𝐿‘(𝑁𝑎)))
5554necomd 2987 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))
5647, 55jaodan 959 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ (𝑎 < 𝑏𝑏 < 𝑎)) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))
5756ex 412 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → ((𝑎 < 𝑏𝑏 < 𝑎) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏))))
58 biidd 262 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (𝑎 = 𝑏𝑎 = 𝑏))
5958necon3bbid 2969 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏𝑎𝑏))
60 elfzelz 13541 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (1...((od𝑅)‘𝑁)) → 𝑎 ∈ ℤ)
6160adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) → 𝑎 ∈ ℤ)
6261adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → 𝑎 ∈ ℤ)
6362zred 12697 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → 𝑎 ∈ ℝ)
64 elfzelz 13541 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (1...((od𝑅)‘𝑁)) → 𝑏 ∈ ℤ)
6564zred 12697 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (1...((od𝑅)‘𝑁)) → 𝑏 ∈ ℝ)
6665adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → 𝑏 ∈ ℝ)
67 lttri2 11317 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎𝑏 ↔ (𝑎 < 𝑏𝑏 < 𝑎)))
6863, 66, 67syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (𝑎𝑏 ↔ (𝑎 < 𝑏𝑏 < 𝑎)))
6959, 68bitrd 279 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 ↔ (𝑎 < 𝑏𝑏 < 𝑎)))
7069imbi1d 341 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → ((¬ 𝑎 = 𝑏 → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏))) ↔ ((𝑎 < 𝑏𝑏 < 𝑎) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))))
7157, 70mpbird 257 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏))))
7271imp 406 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))
73 eqidd 2736 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))) = (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))))
74 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑎) → 𝑥 = 𝑎)
7574oveq2d 7421 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑎) → (𝑁𝑥) = (𝑁𝑎))
7675fveq2d 6880 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑎) → (𝐿‘(𝑁𝑥)) = (𝐿‘(𝑁𝑎)))
77 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → 𝑎 ∈ (1...((od𝑅)‘𝑁)))
78 fvexd 6891 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝐿‘(𝑁𝑎)) ∈ V)
7973, 76, 77, 78fvmptd 6993 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = (𝐿‘(𝑁𝑎)))
80 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑏) → 𝑥 = 𝑏)
8180oveq2d 7421 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑏) → (𝑁𝑥) = (𝑁𝑏))
8281fveq2d 6880 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑏) → (𝐿‘(𝑁𝑥)) = (𝐿‘(𝑁𝑏)))
83 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → 𝑏 ∈ (1...((od𝑅)‘𝑁)))
84 fvexd 6891 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝐿‘(𝑁𝑏)) ∈ V)
8573, 82, 83, 84fvmptd 6993 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) = (𝐿‘(𝑁𝑏)))
8679, 85neeq12d 2993 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) ≠ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) ↔ (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏))))
8772, 86mpbird 257 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) ≠ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏))
8887neneqd 2937 . . . . . . . . 9 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ¬ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏))
8988ex 412 . . . . . . . 8 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 → ¬ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏)))
9089con4d 115 . . . . . . 7 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏))
9190ralrimiva 3132 . . . . . 6 ((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) → ∀𝑏 ∈ (1...((od𝑅)‘𝑁))(((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏))
9291ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...((od𝑅)‘𝑁))∀𝑏 ∈ (1...((od𝑅)‘𝑁))(((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏))
9340, 92jca 511 . . . 4 (𝜑 → ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))⟶(𝐿𝐸) ∧ ∀𝑎 ∈ (1...((od𝑅)‘𝑁))∀𝑏 ∈ (1...((od𝑅)‘𝑁))(((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏)))
94 dff13 7247 . . . 4 ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))–1-1→(𝐿𝐸) ↔ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))⟶(𝐿𝐸) ∧ ∀𝑎 ∈ (1...((od𝑅)‘𝑁))∀𝑏 ∈ (1...((od𝑅)‘𝑁))(((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏)))
9593, 94sylibr 234 . . 3 (𝜑 → (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))–1-1→(𝐿𝐸))
96 hashf1dmcdm 14462 . . 3 (((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))) ∈ V ∧ (𝐿𝐸) ∈ V ∧ (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))–1-1→(𝐿𝐸)) → (♯‘(1...((od𝑅)‘𝑁))) ≤ (♯‘(𝐿𝐸)))
9711, 16, 95, 96syl3anc 1373 . 2 (𝜑 → (♯‘(1...((od𝑅)‘𝑁))) ≤ (♯‘(𝐿𝐸)))
989, 97eqbrtrrd 5143 1 (𝜑 → ((od𝑅)‘𝑁) ≤ (♯‘(𝐿𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  wss 3926   class class class wbr 5119  cmpt 5201  cima 5657   Fn wfn 6526  wf 6527  1-1wf1 6528  cfv 6531  (class class class)co 7405  cr 11128  1c1 11130   < clt 11269  cle 11270  cn 12240  0cn0 12501  cz 12588  ...cfz 13524  cexp 14079  chash 14348   gcd cgcd 16513  odcodz 16782  Basecbs 17228  Ringcrg 20193  CRingccrg 20194   RingHom crh 20429  ringczring 21407  ℤRHomczrh 21460  ℤ/nczn 21463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-dvds 16273  df-gcd 16514  df-prm 16691  df-odz 16784  df-phi 16785  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-imas 17522  df-qus 17523  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-zn 21467
This theorem is referenced by:  aks6d1c3  42136
  Copyright terms: Public domain W3C validator