Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashscontpow Structured version   Visualization version   GIF version

Theorem hashscontpow 42064
Description: If a set contains all 𝑁-th powers, then the size of the image under the ZR homomorphism is greater than the 𝑅-th order of 𝑁. (Contributed by metakunt, 28-Apr-2025.)
Hypotheses
Ref Expression
hashscontpow.1 (𝜑𝐸 ⊆ ℤ)
hashscontpow.2 (𝜑𝑁 ∈ ℕ)
hashscontpow.3 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑁𝑘) ∈ 𝐸)
hashscontpow.4 (𝜑𝑅 ∈ ℕ)
hashscontpow.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
hashscontpow.6 𝐿 = (ℤRHom‘𝑌)
hashscontpow.7 𝑌 = (ℤ/nℤ‘𝑅)
Assertion
Ref Expression
hashscontpow (𝜑 → ((od𝑅)‘𝑁) ≤ (♯‘(𝐿𝐸)))
Distinct variable groups:   𝑘,𝐸   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝑅(𝑘)   𝐿(𝑘)   𝑌(𝑘)

Proof of Theorem hashscontpow
Dummy variables 𝑥 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashscontpow.4 . . . . 5 (𝜑𝑅 ∈ ℕ)
2 hashscontpow.2 . . . . . 6 (𝜑𝑁 ∈ ℕ)
32nnzd 12608 . . . . 5 (𝜑𝑁 ∈ ℤ)
4 hashscontpow.5 . . . . 5 (𝜑 → (𝑁 gcd 𝑅) = 1)
5 odzcl 16800 . . . . 5 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) ∈ ℕ)
61, 3, 4, 5syl3anc 1372 . . . 4 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ)
76nnnn0d 12555 . . 3 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ0)
8 hashfz1 14354 . . 3 (((od𝑅)‘𝑁) ∈ ℕ0 → (♯‘(1...((od𝑅)‘𝑁))) = ((od𝑅)‘𝑁))
97, 8syl 17 . 2 (𝜑 → (♯‘(1...((od𝑅)‘𝑁))) = ((od𝑅)‘𝑁))
10 ovexd 7435 . . . 4 (𝜑 → (1...((od𝑅)‘𝑁)) ∈ V)
1110mptexd 7213 . . 3 (𝜑 → (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))) ∈ V)
12 hashscontpow.6 . . . . . 6 𝐿 = (ℤRHom‘𝑌)
1312fvexi 6887 . . . . 5 𝐿 ∈ V
1413a1i 11 . . . 4 (𝜑𝐿 ∈ V)
15 imaexg 7904 . . . 4 (𝐿 ∈ V → (𝐿𝐸) ∈ V)
1614, 15syl 17 . . 3 (𝜑 → (𝐿𝐸) ∈ V)
171nnnn0d 12555 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ0)
18 hashscontpow.7 . . . . . . . . . . . 12 𝑌 = (ℤ/nℤ‘𝑅)
1918zncrng 21492 . . . . . . . . . . 11 (𝑅 ∈ ℕ0𝑌 ∈ CRing)
2017, 19syl 17 . . . . . . . . . 10 (𝜑𝑌 ∈ CRing)
21 crngring 20192 . . . . . . . . . 10 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
2212zrhrhm 21459 . . . . . . . . . 10 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
23 zringbas 21401 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
24 eqid 2734 . . . . . . . . . . 11 (Base‘𝑌) = (Base‘𝑌)
2523, 24rhmf 20432 . . . . . . . . . 10 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2620, 21, 22, 254syl 19 . . . . . . . . 9 (𝜑𝐿:ℤ⟶(Base‘𝑌))
2726ffnd 6704 . . . . . . . 8 (𝜑𝐿 Fn ℤ)
2827adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → 𝐿 Fn ℤ)
293adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → 𝑁 ∈ ℤ)
30 elfznn 13560 . . . . . . . . . 10 (𝑥 ∈ (1...((od𝑅)‘𝑁)) → 𝑥 ∈ ℕ)
3130adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → 𝑥 ∈ ℕ)
3231nnnn0d 12555 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → 𝑥 ∈ ℕ0)
3329, 32zexpcld 14095 . . . . . . 7 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → (𝑁𝑥) ∈ ℤ)
34 oveq2 7408 . . . . . . . . 9 (𝑘 = 𝑥 → (𝑁𝑘) = (𝑁𝑥))
3534eleq1d 2818 . . . . . . . 8 (𝑘 = 𝑥 → ((𝑁𝑘) ∈ 𝐸 ↔ (𝑁𝑥) ∈ 𝐸))
36 hashscontpow.3 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑁𝑘) ∈ 𝐸)
3736adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → ∀𝑘 ∈ ℕ0 (𝑁𝑘) ∈ 𝐸)
3835, 37, 32rspcdva 3600 . . . . . . 7 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → (𝑁𝑥) ∈ 𝐸)
3928, 33, 38fnfvimad 7223 . . . . . 6 ((𝜑𝑥 ∈ (1...((od𝑅)‘𝑁))) → (𝐿‘(𝑁𝑥)) ∈ (𝐿𝐸))
4039fmpttd 7102 . . . . 5 (𝜑 → (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))⟶(𝐿𝐸))
412ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑁 ∈ ℕ)
42 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑎 ∈ (1...((od𝑅)‘𝑁)))
43 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑏 ∈ (1...((od𝑅)‘𝑁)))
441ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑅 ∈ ℕ)
454ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → (𝑁 gcd 𝑅) = 1)
46 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏)
4741, 42, 43, 44, 45, 12, 18, 46hashscontpow1 42063 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))
482ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑁 ∈ ℕ)
49 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑏 ∈ (1...((od𝑅)‘𝑁)))
50 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑎 ∈ (1...((od𝑅)‘𝑁)))
511ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑅 ∈ ℕ)
524ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → (𝑁 gcd 𝑅) = 1)
53 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑏 < 𝑎)
5448, 49, 50, 51, 52, 12, 18, 53hashscontpow1 42063 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → (𝐿‘(𝑁𝑏)) ≠ (𝐿‘(𝑁𝑎)))
5554necomd 2986 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))
5647, 55jaodan 959 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ (𝑎 < 𝑏𝑏 < 𝑎)) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))
5756ex 412 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → ((𝑎 < 𝑏𝑏 < 𝑎) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏))))
58 biidd 262 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (𝑎 = 𝑏𝑎 = 𝑏))
5958necon3bbid 2968 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏𝑎𝑏))
60 elfzelz 13531 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ (1...((od𝑅)‘𝑁)) → 𝑎 ∈ ℤ)
6160adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) → 𝑎 ∈ ℤ)
6261adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → 𝑎 ∈ ℤ)
6362zred 12690 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → 𝑎 ∈ ℝ)
64 elfzelz 13531 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (1...((od𝑅)‘𝑁)) → 𝑏 ∈ ℤ)
6564zred 12690 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (1...((od𝑅)‘𝑁)) → 𝑏 ∈ ℝ)
6665adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → 𝑏 ∈ ℝ)
67 lttri2 11310 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎𝑏 ↔ (𝑎 < 𝑏𝑏 < 𝑎)))
6863, 66, 67syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (𝑎𝑏 ↔ (𝑎 < 𝑏𝑏 < 𝑎)))
6959, 68bitrd 279 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 ↔ (𝑎 < 𝑏𝑏 < 𝑎)))
7069imbi1d 341 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → ((¬ 𝑎 = 𝑏 → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏))) ↔ ((𝑎 < 𝑏𝑏 < 𝑎) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))))
7157, 70mpbird 257 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏))))
7271imp 406 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏)))
73 eqidd 2735 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))) = (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))))
74 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑎) → 𝑥 = 𝑎)
7574oveq2d 7416 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑎) → (𝑁𝑥) = (𝑁𝑎))
7675fveq2d 6877 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑎) → (𝐿‘(𝑁𝑥)) = (𝐿‘(𝑁𝑎)))
77 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → 𝑎 ∈ (1...((od𝑅)‘𝑁)))
78 fvexd 6888 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝐿‘(𝑁𝑎)) ∈ V)
7973, 76, 77, 78fvmptd 6990 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = (𝐿‘(𝑁𝑎)))
80 simpr 484 . . . . . . . . . . . . . . 15 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑏) → 𝑥 = 𝑏)
8180oveq2d 7416 . . . . . . . . . . . . . 14 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑏) → (𝑁𝑥) = (𝑁𝑏))
8281fveq2d 6877 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑏) → (𝐿‘(𝑁𝑥)) = (𝐿‘(𝑁𝑏)))
83 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → 𝑏 ∈ (1...((od𝑅)‘𝑁)))
84 fvexd 6888 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝐿‘(𝑁𝑏)) ∈ V)
8573, 82, 83, 84fvmptd 6990 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) = (𝐿‘(𝑁𝑏)))
8679, 85neeq12d 2992 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) ≠ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) ↔ (𝐿‘(𝑁𝑎)) ≠ (𝐿‘(𝑁𝑏))))
8772, 86mpbird 257 . . . . . . . . . 10 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) ≠ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏))
8887neneqd 2936 . . . . . . . . 9 ((((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ¬ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏))
8988ex 412 . . . . . . . 8 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 → ¬ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏)))
9089con4d 115 . . . . . . 7 (((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) ∧ 𝑏 ∈ (1...((od𝑅)‘𝑁))) → (((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏))
9190ralrimiva 3130 . . . . . 6 ((𝜑𝑎 ∈ (1...((od𝑅)‘𝑁))) → ∀𝑏 ∈ (1...((od𝑅)‘𝑁))(((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏))
9291ralrimiva 3130 . . . . 5 (𝜑 → ∀𝑎 ∈ (1...((od𝑅)‘𝑁))∀𝑏 ∈ (1...((od𝑅)‘𝑁))(((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏))
9340, 92jca 511 . . . 4 (𝜑 → ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))⟶(𝐿𝐸) ∧ ∀𝑎 ∈ (1...((od𝑅)‘𝑁))∀𝑏 ∈ (1...((od𝑅)‘𝑁))(((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏)))
94 dff13 7244 . . . 4 ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))–1-1→(𝐿𝐸) ↔ ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))⟶(𝐿𝐸) ∧ ∀𝑎 ∈ (1...((od𝑅)‘𝑁))∀𝑏 ∈ (1...((od𝑅)‘𝑁))(((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑎) = ((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥)))‘𝑏) → 𝑎 = 𝑏)))
9593, 94sylibr 234 . . 3 (𝜑 → (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))–1-1→(𝐿𝐸))
96 hashf1dmcdm 14452 . . 3 (((𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))) ∈ V ∧ (𝐿𝐸) ∈ V ∧ (𝑥 ∈ (1...((od𝑅)‘𝑁)) ↦ (𝐿‘(𝑁𝑥))):(1...((od𝑅)‘𝑁))–1-1→(𝐿𝐸)) → (♯‘(1...((od𝑅)‘𝑁))) ≤ (♯‘(𝐿𝐸)))
9711, 16, 95, 96syl3anc 1372 . 2 (𝜑 → (♯‘(1...((od𝑅)‘𝑁))) ≤ (♯‘(𝐿𝐸)))
989, 97eqbrtrrd 5141 1 (𝜑 → ((od𝑅)‘𝑁) ≤ (♯‘(𝐿𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2931  wral 3050  Vcvv 3457  wss 3924   class class class wbr 5117  cmpt 5199  cima 5655   Fn wfn 6523  wf 6524  1-1wf1 6525  cfv 6528  (class class class)co 7400  cr 11121  1c1 11123   < clt 11262  cle 11263  cn 12233  0cn0 12494  cz 12581  ...cfz 13514  cexp 14069  chash 14338   gcd cgcd 16500  odcodz 16769  Basecbs 17215  Ringcrg 20180  CRingccrg 20181   RingHom crh 20416  ringczring 21394  ℤRHomczrh 21447  ℤ/nczn 21450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200  ax-addf 11201  ax-mulf 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-tpos 8220  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-oadd 8479  df-er 8714  df-ec 8716  df-qs 8720  df-map 8837  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-sup 9449  df-inf 9450  df-dju 9908  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-xnn0 12568  df-z 12582  df-dec 12702  df-uz 12846  df-rp 13002  df-fz 13515  df-fzo 13662  df-fl 13799  df-mod 13877  df-seq 14010  df-exp 14070  df-hash 14339  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-dvds 16260  df-gcd 16501  df-prm 16678  df-odz 16771  df-phi 16772  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-0g 17442  df-imas 17509  df-qus 17510  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18748  df-grp 18906  df-minusg 18907  df-sbg 18908  df-mulg 19038  df-subg 19093  df-nsg 19094  df-eqg 19095  df-ghm 19183  df-cmn 19750  df-abl 19751  df-mgp 20088  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-oppr 20284  df-dvdsr 20304  df-rhm 20419  df-subrng 20493  df-subrg 20517  df-lmod 20806  df-lss 20876  df-lsp 20916  df-sra 21118  df-rgmod 21119  df-lidl 21156  df-rsp 21157  df-2idl 21198  df-cnfld 21303  df-zring 21395  df-zrh 21451  df-zn 21454
This theorem is referenced by:  aks6d1c3  42065
  Copyright terms: Public domain W3C validator