Step | Hyp | Ref
| Expression |
1 | | hashscontpow.4 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℕ) |
2 | | hashscontpow.2 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
3 | 2 | nnzd 12623 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) |
4 | | hashscontpow.5 |
. . . . 5
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
5 | | odzcl 16769 |
. . . . 5
⊢ ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) →
((odℤ‘𝑅)‘𝑁) ∈ ℕ) |
6 | 1, 3, 4, 5 | syl3anc 1368 |
. . . 4
⊢ (𝜑 →
((odℤ‘𝑅)‘𝑁) ∈ ℕ) |
7 | 6 | nnnn0d 12570 |
. . 3
⊢ (𝜑 →
((odℤ‘𝑅)‘𝑁) ∈
ℕ0) |
8 | | hashfz1 14345 |
. . 3
⊢
(((odℤ‘𝑅)‘𝑁) ∈ ℕ0 →
(♯‘(1...((odℤ‘𝑅)‘𝑁))) = ((odℤ‘𝑅)‘𝑁)) |
9 | 7, 8 | syl 17 |
. 2
⊢ (𝜑 →
(♯‘(1...((odℤ‘𝑅)‘𝑁))) = ((odℤ‘𝑅)‘𝑁)) |
10 | | ovexd 7461 |
. . . 4
⊢ (𝜑 →
(1...((odℤ‘𝑅)‘𝑁)) ∈ V) |
11 | 10 | mptexd 7242 |
. . 3
⊢ (𝜑 → (𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥))) ∈ V) |
12 | | hashscontpow.6 |
. . . . . 6
⊢ 𝐿 = (ℤRHom‘𝑌) |
13 | 12 | fvexi 6916 |
. . . . 5
⊢ 𝐿 ∈ V |
14 | 13 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ V) |
15 | | imaexg 7927 |
. . . 4
⊢ (𝐿 ∈ V → (𝐿 “ 𝐸) ∈ V) |
16 | 14, 15 | syl 17 |
. . 3
⊢ (𝜑 → (𝐿 “ 𝐸) ∈ V) |
17 | 1 | nnnn0d 12570 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈
ℕ0) |
18 | | hashscontpow.7 |
. . . . . . . . . . . . . 14
⊢ 𝑌 =
(ℤ/nℤ‘𝑅) |
19 | 18 | zncrng 21485 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ ℕ0
→ 𝑌 ∈
CRing) |
20 | 17, 19 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ CRing) |
21 | | crngring 20192 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ Ring) |
23 | 12 | zrhrhm 21444 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring
RingHom 𝑌)) |
24 | 22, 23 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom
𝑌)) |
25 | | zringbas 21386 |
. . . . . . . . . . 11
⊢ ℤ =
(Base‘ℤring) |
26 | | eqid 2728 |
. . . . . . . . . . 11
⊢
(Base‘𝑌) =
(Base‘𝑌) |
27 | 25, 26 | rhmf 20431 |
. . . . . . . . . 10
⊢ (𝐿 ∈ (ℤring
RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
28 | 24, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
29 | 28 | ffnd 6728 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 Fn ℤ) |
30 | 29 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁))) → 𝐿 Fn ℤ) |
31 | 3 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁))) → 𝑁 ∈ ℤ) |
32 | | elfznn 13570 |
. . . . . . . . . 10
⊢ (𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) → 𝑥 ∈ ℕ) |
33 | 32 | adantl 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁))) → 𝑥 ∈ ℕ) |
34 | 33 | nnnn0d 12570 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁))) → 𝑥 ∈ ℕ0) |
35 | 31, 34 | zexpcld 14092 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁))) → (𝑁↑𝑥) ∈ ℤ) |
36 | | oveq2 7434 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (𝑁↑𝑘) = (𝑁↑𝑥)) |
37 | 36 | eleq1d 2814 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → ((𝑁↑𝑘) ∈ 𝐸 ↔ (𝑁↑𝑥) ∈ 𝐸)) |
38 | | hashscontpow.3 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑁↑𝑘) ∈ 𝐸) |
39 | 38 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁))) → ∀𝑘 ∈ ℕ0 (𝑁↑𝑘) ∈ 𝐸) |
40 | 37, 39, 34 | rspcdva 3612 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁))) → (𝑁↑𝑥) ∈ 𝐸) |
41 | 30, 35, 40 | fnfvimad 7252 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁))) → (𝐿‘(𝑁↑𝑥)) ∈ (𝐿 “ 𝐸)) |
42 | 41 | fmpttd 7130 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥))):(1...((odℤ‘𝑅)‘𝑁))⟶(𝐿 “ 𝐸)) |
43 | 2 | ad3antrrr 728 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑁 ∈ ℕ) |
44 | | simpllr 774 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) |
45 | | simplr 767 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) |
46 | 1 | ad3antrrr 728 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑅 ∈ ℕ) |
47 | 4 | ad3antrrr 728 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → (𝑁 gcd 𝑅) = 1) |
48 | | simpr 483 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → 𝑎 < 𝑏) |
49 | 43, 44, 45, 46, 47, 12, 18, 48 | hashscontpow1 41624 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑎 < 𝑏) → (𝐿‘(𝑁↑𝑎)) ≠ (𝐿‘(𝑁↑𝑏))) |
50 | 2 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑁 ∈ ℕ) |
51 | | simplr 767 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) |
52 | | simpllr 774 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) |
53 | 1 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑅 ∈ ℕ) |
54 | 4 | ad3antrrr 728 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → (𝑁 gcd 𝑅) = 1) |
55 | | simpr 483 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → 𝑏 < 𝑎) |
56 | 50, 51, 52, 53, 54, 12, 18, 55 | hashscontpow1 41624 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → (𝐿‘(𝑁↑𝑏)) ≠ (𝐿‘(𝑁↑𝑎))) |
57 | 56 | necomd 2993 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 < 𝑎) → (𝐿‘(𝑁↑𝑎)) ≠ (𝐿‘(𝑁↑𝑏))) |
58 | 49, 57 | jaodan 955 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎)) → (𝐿‘(𝑁↑𝑎)) ≠ (𝐿‘(𝑁↑𝑏))) |
59 | 58 | ex 411 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) → ((𝑎 < 𝑏 ∨ 𝑏 < 𝑎) → (𝐿‘(𝑁↑𝑎)) ≠ (𝐿‘(𝑁↑𝑏)))) |
60 | | biidd 261 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) → (𝑎 = 𝑏 ↔ 𝑎 = 𝑏)) |
61 | 60 | necon3bbid 2975 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 ↔ 𝑎 ≠ 𝑏)) |
62 | | elfzelz 13541 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁)) → 𝑎 ∈ ℤ) |
63 | 62 | adantl 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) → 𝑎 ∈ ℤ) |
64 | 63 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) → 𝑎 ∈ ℤ) |
65 | 64 | zred 12704 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) → 𝑎 ∈ ℝ) |
66 | | elfzelz 13541 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁)) → 𝑏 ∈ ℤ) |
67 | 66 | zred 12704 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁)) → 𝑏 ∈ ℝ) |
68 | 67 | adantl 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) → 𝑏 ∈ ℝ) |
69 | | lttri2 11334 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 ≠ 𝑏 ↔ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎))) |
70 | 65, 68, 69 | syl2anc 582 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) → (𝑎 ≠ 𝑏 ↔ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎))) |
71 | 61, 70 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 ↔ (𝑎 < 𝑏 ∨ 𝑏 < 𝑎))) |
72 | 71 | imbi1d 340 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) → ((¬ 𝑎 = 𝑏 → (𝐿‘(𝑁↑𝑎)) ≠ (𝐿‘(𝑁↑𝑏))) ↔ ((𝑎 < 𝑏 ∨ 𝑏 < 𝑎) → (𝐿‘(𝑁↑𝑎)) ≠ (𝐿‘(𝑁↑𝑏))))) |
73 | 59, 72 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 → (𝐿‘(𝑁↑𝑎)) ≠ (𝐿‘(𝑁↑𝑏)))) |
74 | 73 | imp 405 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝐿‘(𝑁↑𝑎)) ≠ (𝐿‘(𝑁↑𝑏))) |
75 | | eqidd 2729 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥))) = (𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))) |
76 | | simpr 483 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑎) → 𝑥 = 𝑎) |
77 | 76 | oveq2d 7442 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑎) → (𝑁↑𝑥) = (𝑁↑𝑎)) |
78 | 77 | fveq2d 6906 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑎) → (𝐿‘(𝑁↑𝑥)) = (𝐿‘(𝑁↑𝑎))) |
79 | | simpllr 774 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) |
80 | | fvexd 6917 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝐿‘(𝑁↑𝑎)) ∈ V) |
81 | 75, 78, 79, 80 | fvmptd 7017 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑎) = (𝐿‘(𝑁↑𝑎))) |
82 | | simpr 483 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑏) → 𝑥 = 𝑏) |
83 | 82 | oveq2d 7442 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑏) → (𝑁↑𝑥) = (𝑁↑𝑏)) |
84 | 83 | fveq2d 6906 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) ∧ 𝑥 = 𝑏) → (𝐿‘(𝑁↑𝑥)) = (𝐿‘(𝑁↑𝑏))) |
85 | | simplr 767 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) |
86 | | fvexd 6917 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (𝐿‘(𝑁↑𝑏)) ∈ V) |
87 | 75, 84, 85, 86 | fvmptd 7017 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑏) = (𝐿‘(𝑁↑𝑏))) |
88 | 81, 87 | neeq12d 2999 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → (((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑎) ≠ ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑏) ↔ (𝐿‘(𝑁↑𝑎)) ≠ (𝐿‘(𝑁↑𝑏)))) |
89 | 74, 88 | mpbird 256 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑎) ≠ ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑏)) |
90 | 89 | neneqd 2942 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ ¬ 𝑎 = 𝑏) → ¬ ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑎) = ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑏)) |
91 | 90 | ex 411 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) → (¬ 𝑎 = 𝑏 → ¬ ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑎) = ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑏))) |
92 | 91 | con4d 115 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) ∧ 𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))) → (((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑎) = ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑏) → 𝑎 = 𝑏)) |
93 | 92 | ralrimiva 3143 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))) → ∀𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))(((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑎) = ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑏) → 𝑎 = 𝑏)) |
94 | 93 | ralrimiva 3143 |
. . . . 5
⊢ (𝜑 → ∀𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))∀𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))(((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑎) = ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑏) → 𝑎 = 𝑏)) |
95 | 42, 94 | jca 510 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥))):(1...((odℤ‘𝑅)‘𝑁))⟶(𝐿 “ 𝐸) ∧ ∀𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))∀𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))(((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑎) = ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑏) → 𝑎 = 𝑏))) |
96 | | dff13 7271 |
. . . 4
⊢ ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥))):(1...((odℤ‘𝑅)‘𝑁))–1-1→(𝐿 “ 𝐸) ↔ ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥))):(1...((odℤ‘𝑅)‘𝑁))⟶(𝐿 “ 𝐸) ∧ ∀𝑎 ∈
(1...((odℤ‘𝑅)‘𝑁))∀𝑏 ∈
(1...((odℤ‘𝑅)‘𝑁))(((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑎) = ((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥)))‘𝑏) → 𝑎 = 𝑏))) |
97 | 95, 96 | sylibr 233 |
. . 3
⊢ (𝜑 → (𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥))):(1...((odℤ‘𝑅)‘𝑁))–1-1→(𝐿 “ 𝐸)) |
98 | | hashf1dmcdm 14443 |
. . 3
⊢ (((𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥))) ∈ V ∧ (𝐿 “ 𝐸) ∈ V ∧ (𝑥 ∈
(1...((odℤ‘𝑅)‘𝑁)) ↦ (𝐿‘(𝑁↑𝑥))):(1...((odℤ‘𝑅)‘𝑁))–1-1→(𝐿 “ 𝐸)) →
(♯‘(1...((odℤ‘𝑅)‘𝑁))) ≤ (♯‘(𝐿 “ 𝐸))) |
99 | 11, 16, 97, 98 | syl3anc 1368 |
. 2
⊢ (𝜑 →
(♯‘(1...((odℤ‘𝑅)‘𝑁))) ≤ (♯‘(𝐿 “ 𝐸))) |
100 | 9, 99 | eqbrtrrd 5176 |
1
⊢ (𝜑 →
((odℤ‘𝑅)‘𝑁) ≤ (♯‘(𝐿 “ 𝐸))) |