| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cayleyhamilton | Structured version Visualization version GIF version | ||
| Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", see theorem 7.8 in [Roman] p. 170 (without proof!), or theorem 3.1 in [Lang] p. 561. In other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. This is Metamath 100 proof #49. (Contributed by Alexander van der Vekens, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| cayleyhamilton.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cayleyhamilton.b | ⊢ 𝐵 = (Base‘𝐴) |
| cayleyhamilton.0 | ⊢ 0 = (0g‘𝐴) |
| cayleyhamilton.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| cayleyhamilton.k | ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) |
| cayleyhamilton.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
| cayleyhamilton.e | ⊢ ↑ = (.g‘(mulGrp‘𝐴)) |
| Ref | Expression |
|---|---|
| cayleyhamilton | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cayleyhamilton.a | . 2 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | cayleyhamilton.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | cayleyhamilton.0 | . 2 ⊢ 0 = (0g‘𝐴) | |
| 4 | eqid 2731 | . 2 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 5 | cayleyhamilton.m | . 2 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
| 6 | cayleyhamilton.e | . 2 ⊢ ↑ = (.g‘(mulGrp‘𝐴)) | |
| 7 | cayleyhamilton.c | . 2 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 8 | cayleyhamilton.k | . 2 ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) | |
| 9 | eqid 2731 | . 2 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 10 | eqid 2731 | . 2 ⊢ (𝑁 Mat (Poly1‘𝑅)) = (𝑁 Mat (Poly1‘𝑅)) | |
| 11 | eqid 2731 | . 2 ⊢ (.r‘(𝑁 Mat (Poly1‘𝑅))) = (.r‘(𝑁 Mat (Poly1‘𝑅))) | |
| 12 | eqid 2731 | . 2 ⊢ (-g‘(𝑁 Mat (Poly1‘𝑅))) = (-g‘(𝑁 Mat (Poly1‘𝑅))) | |
| 13 | eqid 2731 | . 2 ⊢ (0g‘(𝑁 Mat (Poly1‘𝑅))) = (0g‘(𝑁 Mat (Poly1‘𝑅))) | |
| 14 | eqid 2731 | . 2 ⊢ (Base‘(𝑁 Mat (Poly1‘𝑅))) = (Base‘(𝑁 Mat (Poly1‘𝑅))) | |
| 15 | eqid 2731 | . 2 ⊢ (.g‘(mulGrp‘(𝑁 Mat (Poly1‘𝑅)))) = (.g‘(mulGrp‘(𝑁 Mat (Poly1‘𝑅)))) | |
| 16 | eqid 2731 | . 2 ⊢ (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅) | |
| 17 | eqeq1 2735 | . . . 4 ⊢ (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0)) | |
| 18 | eqeq1 2735 | . . . . 5 ⊢ (𝑙 = 𝑛 → (𝑙 = (𝑥 + 1) ↔ 𝑛 = (𝑥 + 1))) | |
| 19 | breq2 5093 | . . . . . 6 ⊢ (𝑙 = 𝑛 → ((𝑥 + 1) < 𝑙 ↔ (𝑥 + 1) < 𝑛)) | |
| 20 | fvoveq1 7369 | . . . . . . . 8 ⊢ (𝑙 = 𝑛 → (𝑦‘(𝑙 − 1)) = (𝑦‘(𝑛 − 1))) | |
| 21 | 20 | fveq2d 6826 | . . . . . . 7 ⊢ (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1))) = ((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))) |
| 22 | 2fveq3 6827 | . . . . . . . 8 ⊢ (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)) = ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))) | |
| 23 | 22 | oveq2d 7362 | . . . . . . 7 ⊢ (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))) = (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))) |
| 24 | 21, 23 | oveq12d 7364 | . . . . . 6 ⊢ (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))) = (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))))) |
| 25 | 19, 24 | ifbieq2d 4499 | . . . . 5 ⊢ (𝑙 = 𝑛 → if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))))) = if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))) |
| 26 | 18, 25 | ifbieq2d 4499 | . . . 4 ⊢ (𝑙 = 𝑛 → if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))))) = if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))))))) |
| 27 | 17, 26 | ifbieq2d 4499 | . . 3 ⊢ (𝑙 = 𝑛 → if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))))))) = if(𝑛 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))))) |
| 28 | 27 | cbvmptv 5193 | . 2 ⊢ (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))))))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))))) |
| 29 | eqid 2731 | . 2 ⊢ (𝑁 cPolyMatToMat 𝑅) = (𝑁 cPolyMatToMat 𝑅) | |
| 30 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 28, 29 | cayleyhamilton0 22804 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 − cmin 11344 ℕ0cn0 12381 Basecbs 17120 .rcmulr 17162 ·𝑠 cvsca 17165 0gc0g 17343 Σg cgsu 17344 -gcsg 18848 .gcmg 18980 mulGrpcmgp 20058 1rcur 20099 CRingccrg 20152 Poly1cpl1 22089 coe1cco1 22090 Mat cmat 22322 matToPolyMat cmat2pmat 22619 cPolyMatToMat ccpmat2mat 22620 CharPlyMat cchpmat 22741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-cur 8197 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-reverse 14666 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-gim 19171 df-cntz 19229 df-oppg 19258 df-symg 19282 df-pmtr 19354 df-psgn 19403 df-evpm 19404 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-drng 20646 df-lmod 20795 df-lss 20865 df-sra 21107 df-rgmod 21108 df-cnfld 21292 df-zring 21384 df-zrh 21440 df-dsmm 21669 df-frlm 21684 df-assa 21790 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-coe1 22095 df-mamu 22306 df-mat 22323 df-mdet 22500 df-madu 22549 df-cpmat 22621 df-mat2pmat 22622 df-cpmat2mat 22623 df-decpmat 22678 df-pm2mp 22708 df-chpmat 22742 |
| This theorem is referenced by: cayleyhamilton1 22807 |
| Copyright terms: Public domain | W3C validator |