![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cayleyhamilton | Structured version Visualization version GIF version |
Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", see theorem 7.8 in [Roman] p. 170 (without proof!), or theorem 3.1 in [Lang] p. 561. In other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. This is Metamath 100 proof #49. (Contributed by Alexander van der Vekens, 25-Nov-2019.) |
Ref | Expression |
---|---|
cayleyhamilton.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
cayleyhamilton.b | ⊢ 𝐵 = (Base‘𝐴) |
cayleyhamilton.0 | ⊢ 0 = (0g‘𝐴) |
cayleyhamilton.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
cayleyhamilton.k | ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) |
cayleyhamilton.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
cayleyhamilton.e | ⊢ ↑ = (.g‘(mulGrp‘𝐴)) |
Ref | Expression |
---|---|
cayleyhamilton | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cayleyhamilton.a | . 2 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | cayleyhamilton.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
3 | cayleyhamilton.0 | . 2 ⊢ 0 = (0g‘𝐴) | |
4 | eqid 2740 | . 2 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
5 | cayleyhamilton.m | . 2 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
6 | cayleyhamilton.e | . 2 ⊢ ↑ = (.g‘(mulGrp‘𝐴)) | |
7 | cayleyhamilton.c | . 2 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
8 | cayleyhamilton.k | . 2 ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) | |
9 | eqid 2740 | . 2 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
10 | eqid 2740 | . 2 ⊢ (𝑁 Mat (Poly1‘𝑅)) = (𝑁 Mat (Poly1‘𝑅)) | |
11 | eqid 2740 | . 2 ⊢ (.r‘(𝑁 Mat (Poly1‘𝑅))) = (.r‘(𝑁 Mat (Poly1‘𝑅))) | |
12 | eqid 2740 | . 2 ⊢ (-g‘(𝑁 Mat (Poly1‘𝑅))) = (-g‘(𝑁 Mat (Poly1‘𝑅))) | |
13 | eqid 2740 | . 2 ⊢ (0g‘(𝑁 Mat (Poly1‘𝑅))) = (0g‘(𝑁 Mat (Poly1‘𝑅))) | |
14 | eqid 2740 | . 2 ⊢ (Base‘(𝑁 Mat (Poly1‘𝑅))) = (Base‘(𝑁 Mat (Poly1‘𝑅))) | |
15 | eqid 2740 | . 2 ⊢ (.g‘(mulGrp‘(𝑁 Mat (Poly1‘𝑅)))) = (.g‘(mulGrp‘(𝑁 Mat (Poly1‘𝑅)))) | |
16 | eqid 2740 | . 2 ⊢ (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅) | |
17 | eqeq1 2744 | . . . 4 ⊢ (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0)) | |
18 | eqeq1 2744 | . . . . 5 ⊢ (𝑙 = 𝑛 → (𝑙 = (𝑥 + 1) ↔ 𝑛 = (𝑥 + 1))) | |
19 | breq2 5170 | . . . . . 6 ⊢ (𝑙 = 𝑛 → ((𝑥 + 1) < 𝑙 ↔ (𝑥 + 1) < 𝑛)) | |
20 | fvoveq1 7471 | . . . . . . . 8 ⊢ (𝑙 = 𝑛 → (𝑦‘(𝑙 − 1)) = (𝑦‘(𝑛 − 1))) | |
21 | 20 | fveq2d 6924 | . . . . . . 7 ⊢ (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1))) = ((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))) |
22 | 2fveq3 6925 | . . . . . . . 8 ⊢ (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)) = ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))) | |
23 | 22 | oveq2d 7464 | . . . . . . 7 ⊢ (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))) = (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))) |
24 | 21, 23 | oveq12d 7466 | . . . . . 6 ⊢ (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))) = (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))))) |
25 | 19, 24 | ifbieq2d 4574 | . . . . 5 ⊢ (𝑙 = 𝑛 → if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))))) = if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))) |
26 | 18, 25 | ifbieq2d 4574 | . . . 4 ⊢ (𝑙 = 𝑛 → if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))))) = if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))))))) |
27 | 17, 26 | ifbieq2d 4574 | . . 3 ⊢ (𝑙 = 𝑛 → if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))))))) = if(𝑛 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))))) |
28 | 27 | cbvmptv 5279 | . 2 ⊢ (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))))))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))))) |
29 | eqid 2740 | . 2 ⊢ (𝑁 cPolyMatToMat 𝑅) = (𝑁 cPolyMatToMat 𝑅) | |
30 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 28, 29 | cayleyhamilton0 22916 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 − cmin 11520 ℕ0cn0 12553 Basecbs 17258 .rcmulr 17312 ·𝑠 cvsca 17315 0gc0g 17499 Σg cgsu 17500 -gcsg 18975 .gcmg 19107 mulGrpcmgp 20161 1rcur 20208 CRingccrg 20261 Poly1cpl1 22199 coe1cco1 22200 Mat cmat 22432 matToPolyMat cmat2pmat 22731 cPolyMatToMat ccpmat2mat 22732 CharPlyMat cchpmat 22853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-xor 1509 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-cur 8308 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-xnn0 12626 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-word 14563 df-lsw 14611 df-concat 14619 df-s1 14644 df-substr 14689 df-pfx 14719 df-splice 14798 df-reverse 14807 df-s2 14897 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-efmnd 18904 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-gim 19299 df-cntz 19357 df-oppg 19386 df-symg 19411 df-pmtr 19484 df-psgn 19533 df-evpm 19534 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-srg 20214 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-drng 20753 df-lmod 20882 df-lss 20953 df-sra 21195 df-rgmod 21196 df-cnfld 21388 df-zring 21481 df-zrh 21537 df-dsmm 21775 df-frlm 21790 df-assa 21896 df-ascl 21898 df-psr 21952 df-mvr 21953 df-mpl 21954 df-opsr 21956 df-psr1 22202 df-vr1 22203 df-ply1 22204 df-coe1 22205 df-mamu 22416 df-mat 22433 df-mdet 22612 df-madu 22661 df-cpmat 22733 df-mat2pmat 22734 df-cpmat2mat 22735 df-decpmat 22790 df-pm2mp 22820 df-chpmat 22854 |
This theorem is referenced by: cayleyhamilton1 22919 |
Copyright terms: Public domain | W3C validator |