| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cayleyhamilton | Structured version Visualization version GIF version | ||
| Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", see theorem 7.8 in [Roman] p. 170 (without proof!), or theorem 3.1 in [Lang] p. 561. In other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. This is Metamath 100 proof #49. (Contributed by Alexander van der Vekens, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| cayleyhamilton.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cayleyhamilton.b | ⊢ 𝐵 = (Base‘𝐴) |
| cayleyhamilton.0 | ⊢ 0 = (0g‘𝐴) |
| cayleyhamilton.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| cayleyhamilton.k | ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) |
| cayleyhamilton.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
| cayleyhamilton.e | ⊢ ↑ = (.g‘(mulGrp‘𝐴)) |
| Ref | Expression |
|---|---|
| cayleyhamilton | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cayleyhamilton.a | . 2 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | cayleyhamilton.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | cayleyhamilton.0 | . 2 ⊢ 0 = (0g‘𝐴) | |
| 4 | eqid 2729 | . 2 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 5 | cayleyhamilton.m | . 2 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
| 6 | cayleyhamilton.e | . 2 ⊢ ↑ = (.g‘(mulGrp‘𝐴)) | |
| 7 | cayleyhamilton.c | . 2 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 8 | cayleyhamilton.k | . 2 ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) | |
| 9 | eqid 2729 | . 2 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 10 | eqid 2729 | . 2 ⊢ (𝑁 Mat (Poly1‘𝑅)) = (𝑁 Mat (Poly1‘𝑅)) | |
| 11 | eqid 2729 | . 2 ⊢ (.r‘(𝑁 Mat (Poly1‘𝑅))) = (.r‘(𝑁 Mat (Poly1‘𝑅))) | |
| 12 | eqid 2729 | . 2 ⊢ (-g‘(𝑁 Mat (Poly1‘𝑅))) = (-g‘(𝑁 Mat (Poly1‘𝑅))) | |
| 13 | eqid 2729 | . 2 ⊢ (0g‘(𝑁 Mat (Poly1‘𝑅))) = (0g‘(𝑁 Mat (Poly1‘𝑅))) | |
| 14 | eqid 2729 | . 2 ⊢ (Base‘(𝑁 Mat (Poly1‘𝑅))) = (Base‘(𝑁 Mat (Poly1‘𝑅))) | |
| 15 | eqid 2729 | . 2 ⊢ (.g‘(mulGrp‘(𝑁 Mat (Poly1‘𝑅)))) = (.g‘(mulGrp‘(𝑁 Mat (Poly1‘𝑅)))) | |
| 16 | eqid 2729 | . 2 ⊢ (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅) | |
| 17 | eqeq1 2733 | . . . 4 ⊢ (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0)) | |
| 18 | eqeq1 2733 | . . . . 5 ⊢ (𝑙 = 𝑛 → (𝑙 = (𝑥 + 1) ↔ 𝑛 = (𝑥 + 1))) | |
| 19 | breq2 5096 | . . . . . 6 ⊢ (𝑙 = 𝑛 → ((𝑥 + 1) < 𝑙 ↔ (𝑥 + 1) < 𝑛)) | |
| 20 | fvoveq1 7372 | . . . . . . . 8 ⊢ (𝑙 = 𝑛 → (𝑦‘(𝑙 − 1)) = (𝑦‘(𝑛 − 1))) | |
| 21 | 20 | fveq2d 6826 | . . . . . . 7 ⊢ (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1))) = ((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))) |
| 22 | 2fveq3 6827 | . . . . . . . 8 ⊢ (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)) = ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))) | |
| 23 | 22 | oveq2d 7365 | . . . . . . 7 ⊢ (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))) = (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))) |
| 24 | 21, 23 | oveq12d 7367 | . . . . . 6 ⊢ (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))) = (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))))) |
| 25 | 19, 24 | ifbieq2d 4503 | . . . . 5 ⊢ (𝑙 = 𝑛 → if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))))) = if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))) |
| 26 | 18, 25 | ifbieq2d 4503 | . . . 4 ⊢ (𝑙 = 𝑛 → if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))))) = if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))))))) |
| 27 | 17, 26 | ifbieq2d 4503 | . . 3 ⊢ (𝑙 = 𝑛 → if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))))))) = if(𝑛 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))))) |
| 28 | 27 | cbvmptv 5196 | . 2 ⊢ (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))))))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))))) |
| 29 | eqid 2729 | . 2 ⊢ (𝑁 cPolyMatToMat 𝑅) = (𝑁 cPolyMatToMat 𝑅) | |
| 30 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 28, 29 | cayleyhamilton0 22774 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4476 class class class wbr 5092 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 0cc0 11009 1c1 11010 + caddc 11012 < clt 11149 − cmin 11347 ℕ0cn0 12384 Basecbs 17120 .rcmulr 17162 ·𝑠 cvsca 17165 0gc0g 17343 Σg cgsu 17344 -gcsg 18814 .gcmg 18946 mulGrpcmgp 20025 1rcur 20066 CRingccrg 20119 Poly1cpl1 22059 coe1cco1 22060 Mat cmat 22292 matToPolyMat cmat2pmat 22589 cPolyMatToMat ccpmat2mat 22590 CharPlyMat cchpmat 22711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-cur 8200 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14503 df-substr 14548 df-pfx 14578 df-splice 14656 df-reverse 14665 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-efmnd 18743 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-gim 19138 df-cntz 19196 df-oppg 19225 df-symg 19249 df-pmtr 19321 df-psgn 19370 df-evpm 19371 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-drng 20616 df-lmod 20765 df-lss 20835 df-sra 21077 df-rgmod 21078 df-cnfld 21262 df-zring 21354 df-zrh 21410 df-dsmm 21639 df-frlm 21654 df-assa 21760 df-ascl 21762 df-psr 21816 df-mvr 21817 df-mpl 21818 df-opsr 21820 df-psr1 22062 df-vr1 22063 df-ply1 22064 df-coe1 22065 df-mamu 22276 df-mat 22293 df-mdet 22470 df-madu 22519 df-cpmat 22591 df-mat2pmat 22592 df-cpmat2mat 22593 df-decpmat 22648 df-pm2mp 22678 df-chpmat 22712 |
| This theorem is referenced by: cayleyhamilton1 22777 |
| Copyright terms: Public domain | W3C validator |