| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cayleyhamilton | Structured version Visualization version GIF version | ||
| Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", see theorem 7.8 in [Roman] p. 170 (without proof!), or theorem 3.1 in [Lang] p. 561. In other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. This is Metamath 100 proof #49. (Contributed by Alexander van der Vekens, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| cayleyhamilton.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| cayleyhamilton.b | ⊢ 𝐵 = (Base‘𝐴) |
| cayleyhamilton.0 | ⊢ 0 = (0g‘𝐴) |
| cayleyhamilton.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| cayleyhamilton.k | ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) |
| cayleyhamilton.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
| cayleyhamilton.e | ⊢ ↑ = (.g‘(mulGrp‘𝐴)) |
| Ref | Expression |
|---|---|
| cayleyhamilton | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cayleyhamilton.a | . 2 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | cayleyhamilton.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | cayleyhamilton.0 | . 2 ⊢ 0 = (0g‘𝐴) | |
| 4 | eqid 2734 | . 2 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 5 | cayleyhamilton.m | . 2 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
| 6 | cayleyhamilton.e | . 2 ⊢ ↑ = (.g‘(mulGrp‘𝐴)) | |
| 7 | cayleyhamilton.c | . 2 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
| 8 | cayleyhamilton.k | . 2 ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) | |
| 9 | eqid 2734 | . 2 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 10 | eqid 2734 | . 2 ⊢ (𝑁 Mat (Poly1‘𝑅)) = (𝑁 Mat (Poly1‘𝑅)) | |
| 11 | eqid 2734 | . 2 ⊢ (.r‘(𝑁 Mat (Poly1‘𝑅))) = (.r‘(𝑁 Mat (Poly1‘𝑅))) | |
| 12 | eqid 2734 | . 2 ⊢ (-g‘(𝑁 Mat (Poly1‘𝑅))) = (-g‘(𝑁 Mat (Poly1‘𝑅))) | |
| 13 | eqid 2734 | . 2 ⊢ (0g‘(𝑁 Mat (Poly1‘𝑅))) = (0g‘(𝑁 Mat (Poly1‘𝑅))) | |
| 14 | eqid 2734 | . 2 ⊢ (Base‘(𝑁 Mat (Poly1‘𝑅))) = (Base‘(𝑁 Mat (Poly1‘𝑅))) | |
| 15 | eqid 2734 | . 2 ⊢ (.g‘(mulGrp‘(𝑁 Mat (Poly1‘𝑅)))) = (.g‘(mulGrp‘(𝑁 Mat (Poly1‘𝑅)))) | |
| 16 | eqid 2734 | . 2 ⊢ (𝑁 matToPolyMat 𝑅) = (𝑁 matToPolyMat 𝑅) | |
| 17 | eqeq1 2738 | . . . 4 ⊢ (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0)) | |
| 18 | eqeq1 2738 | . . . . 5 ⊢ (𝑙 = 𝑛 → (𝑙 = (𝑥 + 1) ↔ 𝑛 = (𝑥 + 1))) | |
| 19 | breq2 5127 | . . . . . 6 ⊢ (𝑙 = 𝑛 → ((𝑥 + 1) < 𝑙 ↔ (𝑥 + 1) < 𝑛)) | |
| 20 | fvoveq1 7436 | . . . . . . . 8 ⊢ (𝑙 = 𝑛 → (𝑦‘(𝑙 − 1)) = (𝑦‘(𝑛 − 1))) | |
| 21 | 20 | fveq2d 6890 | . . . . . . 7 ⊢ (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1))) = ((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))) |
| 22 | 2fveq3 6891 | . . . . . . . 8 ⊢ (𝑙 = 𝑛 → ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)) = ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))) | |
| 23 | 22 | oveq2d 7429 | . . . . . . 7 ⊢ (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))) = (((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))) |
| 24 | 21, 23 | oveq12d 7431 | . . . . . 6 ⊢ (𝑙 = 𝑛 → (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))) = (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))))) |
| 25 | 19, 24 | ifbieq2d 4532 | . . . . 5 ⊢ (𝑙 = 𝑛 → if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))))) = if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))) |
| 26 | 18, 25 | ifbieq2d 4532 | . . . 4 ⊢ (𝑙 = 𝑛 → if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))))) = if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛))))))) |
| 27 | 17, 26 | ifbieq2d 4532 | . . 3 ⊢ (𝑙 = 𝑛 → if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙))))))) = if(𝑛 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))))) |
| 28 | 27 | cbvmptv 5235 | . 2 ⊢ (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑙 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑙, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑙 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑙)))))))) = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ((0g‘(𝑁 Mat (Poly1‘𝑅)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘0)))), if(𝑛 = (𝑥 + 1), ((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑥)), if((𝑥 + 1) < 𝑛, (0g‘(𝑁 Mat (Poly1‘𝑅))), (((𝑁 matToPolyMat 𝑅)‘(𝑦‘(𝑛 − 1)))(-g‘(𝑁 Mat (Poly1‘𝑅)))(((𝑁 matToPolyMat 𝑅)‘𝑀)(.r‘(𝑁 Mat (Poly1‘𝑅)))((𝑁 matToPolyMat 𝑅)‘(𝑦‘𝑛)))))))) |
| 29 | eqid 2734 | . 2 ⊢ (𝑁 cPolyMatToMat 𝑅) = (𝑁 cPolyMatToMat 𝑅) | |
| 30 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 28, 29 | cayleyhamilton0 22843 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ifcif 4505 class class class wbr 5123 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 Fincfn 8967 0cc0 11137 1c1 11138 + caddc 11140 < clt 11277 − cmin 11474 ℕ0cn0 12509 Basecbs 17229 .rcmulr 17274 ·𝑠 cvsca 17277 0gc0g 17455 Σg cgsu 17456 -gcsg 18922 .gcmg 19054 mulGrpcmgp 20105 1rcur 20146 CRingccrg 20199 Poly1cpl1 22126 coe1cco1 22127 Mat cmat 22359 matToPolyMat cmat2pmat 22658 cPolyMatToMat ccpmat2mat 22659 CharPlyMat cchpmat 22780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-addf 11216 ax-mulf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-tpos 8233 df-cur 8274 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-xnn0 12583 df-z 12597 df-dec 12717 df-uz 12861 df-rp 13017 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14352 df-word 14535 df-lsw 14583 df-concat 14591 df-s1 14616 df-substr 14661 df-pfx 14691 df-splice 14770 df-reverse 14779 df-s2 14869 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-hom 17297 df-cco 17298 df-0g 17457 df-gsum 17458 df-prds 17463 df-pws 17465 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-submnd 18766 df-efmnd 18851 df-grp 18923 df-minusg 18924 df-sbg 18925 df-mulg 19055 df-subg 19110 df-ghm 19200 df-gim 19246 df-cntz 19304 df-oppg 19333 df-symg 19355 df-pmtr 19428 df-psgn 19477 df-evpm 19478 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-dvr 20369 df-rhm 20440 df-subrng 20514 df-subrg 20538 df-drng 20699 df-lmod 20828 df-lss 20898 df-sra 21140 df-rgmod 21141 df-cnfld 21327 df-zring 21420 df-zrh 21476 df-dsmm 21706 df-frlm 21721 df-assa 21827 df-ascl 21829 df-psr 21883 df-mvr 21884 df-mpl 21885 df-opsr 21887 df-psr1 22129 df-vr1 22130 df-ply1 22131 df-coe1 22132 df-mamu 22343 df-mat 22360 df-mdet 22539 df-madu 22588 df-cpmat 22660 df-mat2pmat 22661 df-cpmat2mat 22662 df-decpmat 22717 df-pm2mp 22747 df-chpmat 22781 |
| This theorem is referenced by: cayleyhamilton1 22846 |
| Copyright terms: Public domain | W3C validator |