MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pire Structured version   Visualization version   GIF version

Theorem pire 26373
Description: π is a real number. (Contributed by Paul Chapman, 23-Jan-2008.)
Assertion
Ref Expression
pire π ∈ ℝ

Proof of Theorem pire
StepHypRef Expression
1 pilem3 26370 . . 3 (π ∈ (2(,)4) ∧ (sin‘π) = 0)
21simpli 483 . 2 π ∈ (2(,)4)
3 elioore 13343 . 2 (π ∈ (2(,)4) → π ∈ ℝ)
42, 3ax-mp 5 1 π ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  2c2 12248  4c4 12250  (,)cioo 13313  sincsin 16036  πcpi 16039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  picn  26374  pipos  26375  pine0  26376  pirp  26377  sinhalfpilem  26379  halfpire  26380  sincosq1lem  26413  sincosq2sgn  26415  sincosq3sgn  26416  sincosq4sgn  26417  coseq00topi  26418  coseq0negpitopi  26419  tangtx  26421  sinq12gt0  26423  sinq12ge0  26424  sinq34lt0t  26425  cosq14gt0  26426  cosq14ge0  26427  sincos4thpi  26429  tan4thpiOLD  26431  sincos6thpi  26432  pigt3  26434  pige3  26435  pige3ALT  26436  coskpi  26439  sineq0  26440  coseq1  26441  cos02pilt1  26442  cosq34lt1  26443  efeq1  26444  cosne0  26445  cosordlem  26446  cosord  26447  cos0pilt1  26448  cos11  26449  sinord  26450  recosf1o  26451  resinf1o  26452  tanord1  26453  negpitopissre  26456  efif1olem1  26458  efif1olem2  26459  efif1olem4  26461  efif1o  26462  efifo  26463  eff1o  26465  ellogrn  26475  relogrn  26477  logimclad  26488  abslogimle  26489  logi  26503  logneg  26504  lognegb  26506  eflogeq  26518  logcj  26522  argregt0  26526  argrege0  26527  argimgt0  26528  argimlt0  26529  logimul  26530  logneg2  26531  abslogle  26534  logcnlem3  26560  dvloglem  26564  logf1o2  26566  efopnlem1  26572  efopnlem2  26573  cxpsqrtlem  26618  abscxpbnd  26670  root1eq1  26672  logreclem  26679  ang180lem1  26726  ang180lem2  26727  ang180lem3  26728  ang180lem4  26729  isosctrlem1  26735  1cubrlem  26758  asinneg  26803  asinsin  26809  asin1  26811  acosbnd  26817  atanlogaddlem  26830  atanlogsublem  26832  atanlogsub  26833  atantan  26840  atanbndlem  26842  atan1  26845  o1cxp  26892  lgamgulmlem4  26949  lgamgulmlem5  26950  lgamgulmlem6  26951  lgambdd  26954  basellem1  26998  basellem4  27001  basellem8  27005  basellem9  27006  cos9thpinconstrlem1  33786  circum  35668  bj-pinftyccb  37216  bj-minftyccb  37220  bj-pinftynminfty  37222  taupi  37318  sin2h  37611  cos2h  37612  tan2h  37613  asin1half  42352  acos1half  42353  proot1ex  43192  isosctrlem1ALT  44930  sineq0ALT  44933  negpilt0  45286  coseq0  45869  sinaover2ne0  45873  itgsin0pilem1  45955  itgsinexplem1  45959  itgsinexp  45960  wallispilem1  46070  wallispilem2  46071  wallispi  46075  stirlinglem15  46093  stirlingr  46095  dirker2re  46097  dirkerval2  46099  dirkerre  46100  dirkerper  46101  dirkertrigeqlem2  46104  dirkertrigeqlem3  46105  dirkertrigeq  46106  dirkeritg  46107  dirkercncflem1  46108  dirkercncflem2  46109  dirkercncflem4  46111  fourierdlem5  46117  fourierdlem9  46121  fourierdlem16  46128  fourierdlem18  46130  fourierdlem21  46133  fourierdlem22  46134  fourierdlem24  46136  fourierdlem38  46150  fourierdlem40  46152  fourierdlem43  46155  fourierdlem44  46156  fourierdlem46  46157  fourierdlem50  46161  fourierdlem58  46169  fourierdlem62  46173  fourierdlem66  46177  fourierdlem72  46183  fourierdlem74  46185  fourierdlem75  46186  fourierdlem76  46187  fourierdlem77  46188  fourierdlem78  46189  fourierdlem83  46194  fourierdlem85  46196  fourierdlem87  46198  fourierdlem88  46199  fourierdlem93  46204  fourierdlem94  46205  fourierdlem95  46206  fourierdlem101  46212  fourierdlem102  46213  fourierdlem103  46214  fourierdlem104  46215  fourierdlem111  46222  fourierdlem112  46223  fourierdlem113  46224  fourierdlem114  46225  sqwvfoura  46233  sqwvfourb  46234  fourierswlem  46235  fouriersw  46236  fouriercn  46237
  Copyright terms: Public domain W3C validator