Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapdcl Structured version   Visualization version   GIF version

Theorem hgmapdcl 39066
Description: Closure of the vector space to dual space scalar map, in the scalar sigma map. (Contributed by NM, 6-Jun-2015.)
Hypotheses
Ref Expression
hgmapdcl.h 𝐻 = (LHyp‘𝐾)
hgmapdcl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapdcl.r 𝑅 = (Scalar‘𝑈)
hgmapdcl.b 𝐵 = (Base‘𝑅)
hgmapdcl.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hgmapdcl.q 𝑄 = (Scalar‘𝐶)
hgmapdcl.a 𝐴 = (Base‘𝑄)
hgmapdcl.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hgmapdcl.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hgmapdcl.f (𝜑𝐹𝐵)
Assertion
Ref Expression
hgmapdcl (𝜑 → (𝐺𝐹) ∈ 𝐴)

Proof of Theorem hgmapdcl
StepHypRef Expression
1 hgmapdcl.h . . 3 𝐻 = (LHyp‘𝐾)
2 hgmapdcl.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hgmapdcl.r . . 3 𝑅 = (Scalar‘𝑈)
4 hgmapdcl.b . . 3 𝐵 = (Base‘𝑅)
5 hgmapdcl.g . . 3 𝐺 = ((HGMap‘𝐾)‘𝑊)
6 hgmapdcl.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 hgmapdcl.f . . 3 (𝜑𝐹𝐵)
81, 2, 3, 4, 5, 6, 7hgmapcl 39065 . 2 (𝜑 → (𝐺𝐹) ∈ 𝐵)
9 hgmapdcl.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
10 hgmapdcl.q . . 3 𝑄 = (Scalar‘𝐶)
11 hgmapdcl.a . . 3 𝐴 = (Base‘𝑄)
121, 2, 3, 4, 9, 10, 11, 6lcdsbase 38776 . 2 (𝜑𝐴 = 𝐵)
138, 12eleqtrrd 2915 1 (𝜑 → (𝐺𝐹) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cfv 6328  Basecbs 16461  Scalarcsca 16546  HLchlt 36526  LHypclh 37160  DVecHcdvh 38254  LCDualclcd 38762  HGMapchg 39059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-riotaBAD 36129
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-ot 4549  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-tpos 7867  df-undef 7914  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-sca 16559  df-vsca 16560  df-0g 16693  df-mre 16835  df-mrc 16836  df-acs 16838  df-proset 17516  df-poset 17534  df-plt 17546  df-lub 17562  df-glb 17563  df-join 17564  df-meet 17565  df-p0 17627  df-p1 17628  df-lat 17634  df-clat 17696  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-submnd 17935  df-grp 18084  df-minusg 18085  df-sbg 18086  df-subg 18254  df-cntz 18425  df-oppg 18452  df-lsm 18739  df-cmn 18886  df-abl 18887  df-mgp 19218  df-ur 19230  df-ring 19277  df-oppr 19351  df-dvdsr 19369  df-unit 19370  df-invr 19400  df-dvr 19411  df-drng 19479  df-lmod 19611  df-lss 19679  df-lsp 19719  df-lvec 19850  df-lsatoms 36152  df-lshyp 36153  df-lcv 36195  df-lfl 36234  df-lkr 36262  df-ldual 36300  df-oposet 36352  df-ol 36354  df-oml 36355  df-covers 36442  df-ats 36443  df-atl 36474  df-cvlat 36498  df-hlat 36527  df-llines 36674  df-lplanes 36675  df-lvols 36676  df-lines 36677  df-psubsp 36679  df-pmap 36680  df-padd 36972  df-lhyp 37164  df-laut 37165  df-ldil 37280  df-ltrn 37281  df-trl 37335  df-tgrp 37919  df-tendo 37931  df-edring 37933  df-dveca 38179  df-disoa 38205  df-dvech 38255  df-dib 38315  df-dic 38349  df-dih 38405  df-doch 38524  df-djh 38571  df-lcdual 38763  df-mapd 38801  df-hvmap 38933  df-hdmap1 38969  df-hdmap 38970  df-hgmap 39060
This theorem is referenced by:  hgmapval0  39068  hgmapadd  39070  hgmapmul  39071  hgmaprnlem1N  39072  hgmaprnN  39077
  Copyright terms: Public domain W3C validator