| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > minplyelirng | Structured version Visualization version GIF version | ||
| Description: If the minimial polynomial 𝐹 of an element 𝑋 of a field 𝑅 has nonnegative degree, then 𝑋 is integral. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| minplyelirng.b | ⊢ 𝐵 = (Base‘𝑅) |
| minplyelirng.m | ⊢ 𝑀 = (𝑅 minPoly 𝑆) |
| minplyelirng.d | ⊢ 𝐷 = (deg1‘(𝑅 ↾s 𝑆)) |
| minplyelirng.r | ⊢ (𝜑 → 𝑅 ∈ Field) |
| minplyelirng.s | ⊢ (𝜑 → 𝑆 ∈ (SubDRing‘𝑅)) |
| minplyelirng.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| minplyelirng.1 | ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
| Ref | Expression |
|---|---|
| minplyelirng | ⊢ (𝜑 → 𝐴 ∈ (𝑅 IntgRing 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minplyelirng.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | fveq2 6831 | . . . . 5 ⊢ (𝑚 = (𝑀‘𝐴) → ((𝑅 evalSub1 𝑆)‘𝑚) = ((𝑅 evalSub1 𝑆)‘(𝑀‘𝐴))) | |
| 3 | 2 | fveq1d 6833 | . . . 4 ⊢ (𝑚 = (𝑀‘𝐴) → (((𝑅 evalSub1 𝑆)‘𝑚)‘𝐴) = (((𝑅 evalSub1 𝑆)‘(𝑀‘𝐴))‘𝐴)) |
| 4 | 3 | eqeq1d 2735 | . . 3 ⊢ (𝑚 = (𝑀‘𝐴) → ((((𝑅 evalSub1 𝑆)‘𝑚)‘𝐴) = (0g‘𝑅) ↔ (((𝑅 evalSub1 𝑆)‘(𝑀‘𝐴))‘𝐴) = (0g‘𝑅))) |
| 5 | minplyelirng.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | eqid 2733 | . . . 4 ⊢ (0g‘(Poly1‘𝑅)) = (0g‘(Poly1‘𝑅)) | |
| 7 | minplyelirng.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Field) | |
| 8 | minplyelirng.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ (SubDRing‘𝑅)) | |
| 9 | minplyelirng.m | . . . 4 ⊢ 𝑀 = (𝑅 minPoly 𝑆) | |
| 10 | sdrgsubrg 20716 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ∈ (SubRing‘𝑅)) | |
| 11 | 8, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| 12 | eqid 2733 | . . . . . . . 8 ⊢ (𝑅 ↾s 𝑆) = (𝑅 ↾s 𝑆) | |
| 13 | 12 | subrgring 20499 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝑆) ∈ Ring) |
| 14 | 11, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑅 ↾s 𝑆) ∈ Ring) |
| 15 | eqid 2733 | . . . . . . 7 ⊢ (𝑅 evalSub1 𝑆) = (𝑅 evalSub1 𝑆) | |
| 16 | eqid 2733 | . . . . . . 7 ⊢ (Poly1‘(𝑅 ↾s 𝑆)) = (Poly1‘(𝑅 ↾s 𝑆)) | |
| 17 | eqid 2733 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 18 | eqid 2733 | . . . . . . 7 ⊢ {𝑞 ∈ dom (𝑅 evalSub1 𝑆) ∣ (((𝑅 evalSub1 𝑆)‘𝑞)‘𝐴) = (0g‘𝑅)} = {𝑞 ∈ dom (𝑅 evalSub1 𝑆) ∣ (((𝑅 evalSub1 𝑆)‘𝑞)‘𝐴) = (0g‘𝑅)} | |
| 19 | eqid 2733 | . . . . . . 7 ⊢ (RSpan‘(Poly1‘(𝑅 ↾s 𝑆))) = (RSpan‘(Poly1‘(𝑅 ↾s 𝑆))) | |
| 20 | eqid 2733 | . . . . . . 7 ⊢ (idlGen1p‘(𝑅 ↾s 𝑆)) = (idlGen1p‘(𝑅 ↾s 𝑆)) | |
| 21 | 15, 16, 5, 7, 8, 1, 17, 18, 19, 20, 9 | minplycl 33730 | . . . . . 6 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘(𝑅 ↾s 𝑆)))) |
| 22 | minplyelirng.1 | . . . . . 6 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) | |
| 23 | minplyelirng.d | . . . . . . . 8 ⊢ 𝐷 = (deg1‘(𝑅 ↾s 𝑆)) | |
| 24 | eqid 2733 | . . . . . . . 8 ⊢ (0g‘(Poly1‘(𝑅 ↾s 𝑆))) = (0g‘(Poly1‘(𝑅 ↾s 𝑆))) | |
| 25 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘(Poly1‘(𝑅 ↾s 𝑆))) = (Base‘(Poly1‘(𝑅 ↾s 𝑆))) | |
| 26 | 23, 16, 24, 25 | deg1nn0clb 26032 | . . . . . . 7 ⊢ (((𝑅 ↾s 𝑆) ∈ Ring ∧ (𝑀‘𝐴) ∈ (Base‘(Poly1‘(𝑅 ↾s 𝑆)))) → ((𝑀‘𝐴) ≠ (0g‘(Poly1‘(𝑅 ↾s 𝑆))) ↔ (𝐷‘(𝑀‘𝐴)) ∈ ℕ0)) |
| 27 | 26 | biimpar 477 | . . . . . 6 ⊢ ((((𝑅 ↾s 𝑆) ∈ Ring ∧ (𝑀‘𝐴) ∈ (Base‘(Poly1‘(𝑅 ↾s 𝑆)))) ∧ (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) → (𝑀‘𝐴) ≠ (0g‘(Poly1‘(𝑅 ↾s 𝑆)))) |
| 28 | 14, 21, 22, 27 | syl21anc 837 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ≠ (0g‘(Poly1‘(𝑅 ↾s 𝑆)))) |
| 29 | eqid 2733 | . . . . . 6 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 30 | 29, 12, 16, 25, 11, 6 | ressply10g 33541 | . . . . 5 ⊢ (𝜑 → (0g‘(Poly1‘𝑅)) = (0g‘(Poly1‘(𝑅 ↾s 𝑆)))) |
| 31 | 28, 30 | neeqtrrd 3004 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ≠ (0g‘(Poly1‘𝑅))) |
| 32 | eqid 2733 | . . . 4 ⊢ (Monic1p‘(𝑅 ↾s 𝑆)) = (Monic1p‘(𝑅 ↾s 𝑆)) | |
| 33 | 5, 6, 7, 8, 9, 1, 31, 32 | minplynzm1p 33738 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Monic1p‘(𝑅 ↾s 𝑆))) |
| 34 | 15, 16, 5, 7, 8, 1, 17, 9 | minplyann 33733 | . . 3 ⊢ (𝜑 → (((𝑅 evalSub1 𝑆)‘(𝑀‘𝐴))‘𝐴) = (0g‘𝑅)) |
| 35 | 4, 33, 34 | rspcedvdw 3577 | . 2 ⊢ (𝜑 → ∃𝑚 ∈ (Monic1p‘(𝑅 ↾s 𝑆))(((𝑅 evalSub1 𝑆)‘𝑚)‘𝐴) = (0g‘𝑅)) |
| 36 | 7 | fldcrngd 20667 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) |
| 37 | 15, 12, 5, 17, 36, 11 | elirng 33710 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝑅 IntgRing 𝑆) ↔ (𝐴 ∈ 𝐵 ∧ ∃𝑚 ∈ (Monic1p‘(𝑅 ↾s 𝑆))(((𝑅 evalSub1 𝑆)‘𝑚)‘𝐴) = (0g‘𝑅)))) |
| 38 | 1, 35, 37 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝑅 IntgRing 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∃wrex 3058 {crab 3397 dom cdm 5621 ‘cfv 6489 (class class class)co 7355 ℕ0cn0 12391 Basecbs 17130 ↾s cress 17151 0gc0g 17353 Ringcrg 20161 SubRingcsubrg 20494 Fieldcfield 20655 SubDRingcsdrg 20711 RSpancrsp 21154 Poly1cpl1 22099 evalSub1 ces1 22238 deg1cdg1 25996 Monic1pcmn1 26068 idlGen1pcig1p 26072 IntgRing cirng 33707 minPoly cminply 33723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-sup 9336 df-inf 9337 df-oi 9406 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-fzo 13565 df-seq 13919 df-hash 14248 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-hom 17195 df-cco 17196 df-0g 17355 df-gsum 17356 df-prds 17361 df-pws 17363 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-ghm 19135 df-cntz 19239 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-srg 20115 df-ring 20163 df-cring 20164 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-rhm 20400 df-subrng 20471 df-subrg 20495 df-rlreg 20619 df-drng 20656 df-field 20657 df-sdrg 20712 df-lmod 20805 df-lss 20875 df-lsp 20915 df-sra 21117 df-rgmod 21118 df-lidl 21155 df-rsp 21156 df-cnfld 21302 df-assa 21800 df-asp 21801 df-ascl 21802 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-evls 22019 df-evl 22020 df-psr1 22102 df-vr1 22103 df-ply1 22104 df-coe1 22105 df-evls1 22240 df-evl1 22241 df-mdeg 25997 df-deg1 25998 df-mon1 26073 df-uc1p 26074 df-q1p 26075 df-r1p 26076 df-ig1p 26077 df-irng 33708 df-minply 33724 |
| This theorem is referenced by: constrcon 33798 |
| Copyright terms: Public domain | W3C validator |