![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chpscmat0 | Structured version Visualization version GIF version |
Description: The characteristic polynomial of a (nonempty!) scalar matrix, expressed with its diagonal element. (Contributed by AV, 21-Aug-2019.) |
Ref | Expression |
---|---|
chp0mat.c | ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
chp0mat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
chp0mat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
chp0mat.x | ⊢ 𝑋 = (var1‘𝑅) |
chp0mat.g | ⊢ 𝐺 = (mulGrp‘𝑃) |
chp0mat.m | ⊢ ↑ = (.g‘𝐺) |
chpscmat.d | ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} |
chpscmat.s | ⊢ 𝑆 = (algSc‘𝑃) |
chpscmat.m | ⊢ − = (-g‘𝑃) |
Ref | Expression |
---|---|
chpscmat0 | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐼 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐼𝑀𝐼))) → (𝐶‘𝑀) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘(𝐼𝑀𝐼))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chp0mat.c | . 2 ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | |
2 | chp0mat.p | . 2 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | chp0mat.a | . 2 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
4 | chp0mat.x | . 2 ⊢ 𝑋 = (var1‘𝑅) | |
5 | chp0mat.g | . 2 ⊢ 𝐺 = (mulGrp‘𝑃) | |
6 | chp0mat.m | . 2 ⊢ ↑ = (.g‘𝐺) | |
7 | chpscmat.d | . 2 ⊢ 𝐷 = {𝑚 ∈ (Base‘𝐴) ∣ ∃𝑐 ∈ (Base‘𝑅)∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑅))} | |
8 | chpscmat.s | . 2 ⊢ 𝑆 = (algSc‘𝑃) | |
9 | chpscmat.m | . 2 ⊢ − = (-g‘𝑃) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | chpscmat 22873 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐷 ∧ 𝐼 ∈ 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑛𝑀𝑛) = (𝐼𝑀𝐼))) → (𝐶‘𝑀) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘(𝐼𝑀𝐼))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 {crab 3436 ifcif 4534 ‘cfv 6569 (class class class)co 7438 Fincfn 8993 ♯chash 14375 Basecbs 17254 0gc0g 17495 -gcsg 18975 .gcmg 19107 mulGrpcmgp 20161 CRingccrg 20261 algSccascl 21899 var1cv1 22202 Poly1cpl1 22203 Mat cmat 22436 CharPlyMat cchpmat 22857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-addf 11241 ax-mulf 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-ot 4643 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-ofr 7705 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-map 8876 df-pm 8877 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-sup 9489 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-xnn0 12607 df-z 12621 df-dec 12741 df-uz 12886 df-rp 13042 df-fz 13554 df-fzo 13701 df-seq 14049 df-exp 14109 df-hash 14376 df-word 14559 df-lsw 14607 df-concat 14615 df-s1 14640 df-substr 14685 df-pfx 14715 df-splice 14794 df-reverse 14803 df-s2 14893 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-starv 17322 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-unif 17330 df-hom 17331 df-cco 17332 df-0g 17497 df-gsum 17498 df-prds 17503 df-pws 17505 df-mre 17640 df-mrc 17641 df-acs 17643 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-mhm 18818 df-submnd 18819 df-efmnd 18904 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-gim 19299 df-cntz 19357 df-oppg 19386 df-symg 19411 df-pmtr 19484 df-psgn 19533 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-subrng 20572 df-subrg 20596 df-drng 20757 df-lmod 20886 df-lss 20957 df-sra 21199 df-rgmod 21200 df-cnfld 21392 df-zring 21485 df-zrh 21541 df-dsmm 21779 df-frlm 21794 df-ascl 21902 df-psr 21956 df-mvr 21957 df-mpl 21958 df-opsr 21960 df-psr1 22206 df-vr1 22207 df-ply1 22208 df-mamu 22420 df-mat 22437 df-mdet 22616 df-mat2pmat 22738 df-chpmat 22858 |
This theorem is referenced by: chpscmatgsumbin 22875 |
Copyright terms: Public domain | W3C validator |