Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap14lem12 Structured version   Visualization version   GIF version

Theorem hdmap14lem12 41880
Description: Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.)
Hypotheses
Ref Expression
hdmap14lem12.h 𝐻 = (LHyp‘𝐾)
hdmap14lem12.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap14lem12.v 𝑉 = (Base‘𝑈)
hdmap14lem12.t · = ( ·𝑠𝑈)
hdmap14lem12.r 𝑅 = (Scalar‘𝑈)
hdmap14lem12.b 𝐵 = (Base‘𝑅)
hdmap14lem12.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap14lem12.e = ( ·𝑠𝐶)
hdmap14lem12.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap14lem12.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap14lem12.f (𝜑𝐹𝐵)
hdmap14lem12.p 𝑃 = (Scalar‘𝐶)
hdmap14lem12.a 𝐴 = (Base‘𝑃)
hdmap14lem12.o 0 = (0g𝑈)
hdmap14lem12.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap14lem12.g (𝜑𝐺𝐴)
Assertion
Ref Expression
hdmap14lem12 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
Distinct variable groups:   𝑦,𝐴   𝑦,   𝑦,𝐹   𝑦,𝐺   𝑦, 0   𝑦,𝑆   𝑦, ·   𝑦,𝑈   𝑦,𝑉   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑦)   𝑃(𝑦)   𝑅(𝑦)   𝐻(𝑦)   𝐾(𝑦)   𝑊(𝑦)

Proof of Theorem hdmap14lem12
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 hdmap14lem12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap14lem12.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap14lem12.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmap14lem12.t . . . . . 6 · = ( ·𝑠𝑈)
5 hdmap14lem12.r . . . . . 6 𝑅 = (Scalar‘𝑈)
6 hdmap14lem12.b . . . . . 6 𝐵 = (Base‘𝑅)
7 hdmap14lem12.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap14lem12.e . . . . . 6 = ( ·𝑠𝐶)
9 eqid 2730 . . . . . 6 (LSpan‘𝐶) = (LSpan‘𝐶)
10 hdmap14lem12.p . . . . . 6 𝑃 = (Scalar‘𝐶)
11 hdmap14lem12.a . . . . . 6 𝐴 = (Base‘𝑃)
12 hdmap14lem12.s . . . . . 6 𝑆 = ((HDMap‘𝐾)‘𝑊)
13 hdmap14lem12.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14133ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp3 1138 . . . . . . 7 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦 ∈ (𝑉 ∖ { 0 }))
1615eldifad 3929 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦𝑉)
17 hdmap14lem12.f . . . . . . 7 (𝜑𝐹𝐵)
18173ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝐹𝐵)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18hdmap14lem2a 41868 . . . . 5 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → ∃𝑔𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)))
20 simp3 1138 . . . . . . 7 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)))
21 eqid 2730 . . . . . . . . 9 (+g𝑈) = (+g𝑈)
22 hdmap14lem12.o . . . . . . . . 9 0 = (0g𝑈)
23 eqid 2730 . . . . . . . . 9 (LSpan‘𝑈) = (LSpan‘𝑈)
24 eqid 2730 . . . . . . . . 9 (+g𝐶) = (+g𝐶)
25 simp11 1204 . . . . . . . . . 10 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝜑)
2625, 13syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 hdmap14lem12.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2825, 27syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
29 simp13 1206 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑦 ∈ (𝑉 ∖ { 0 }))
3025, 17syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐹𝐵)
31 hdmap14lem12.g . . . . . . . . . 10 (𝜑𝐺𝐴)
3225, 31syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐺𝐴)
33 simp2 1137 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑔𝐴)
34 simp12 1205 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
351, 2, 3, 21, 4, 22, 23, 5, 6, 7, 24, 8, 10, 11, 12, 26, 28, 29, 30, 32, 33, 34, 20hdmap14lem11 41879 . . . . . . . 8 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐺 = 𝑔)
3635oveq1d 7405 . . . . . . 7 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝐺 (𝑆𝑦)) = (𝑔 (𝑆𝑦)))
3720, 36eqtr4d 2768 . . . . . 6 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
3837rexlimdv3a 3139 . . . . 5 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (∃𝑔𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
3919, 38mpd 15 . . . 4 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
40393expia 1121 . . 3 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))) → (𝑦 ∈ (𝑉 ∖ { 0 }) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
4140ralrimiv 3125 . 2 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))) → ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
42 oveq2 7398 . . . . . . 7 (𝑦 = 𝑋 → (𝐹 · 𝑦) = (𝐹 · 𝑋))
4342fveq2d 6865 . . . . . 6 (𝑦 = 𝑋 → (𝑆‘(𝐹 · 𝑦)) = (𝑆‘(𝐹 · 𝑋)))
44 fveq2 6861 . . . . . . 7 (𝑦 = 𝑋 → (𝑆𝑦) = (𝑆𝑋))
4544oveq2d 7406 . . . . . 6 (𝑦 = 𝑋 → (𝐺 (𝑆𝑦)) = (𝐺 (𝑆𝑋)))
4643, 45eqeq12d 2746 . . . . 5 (𝑦 = 𝑋 → ((𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) ↔ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4746rspcv 3587 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4827, 47syl 17 . . 3 (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4948imp 406 . 2 ((𝜑 ∧ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
5041, 49impbida 800 1 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cdif 3914  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  LSpanclspn 20884  HLchlt 39350  LHypclh 39985  DVecHcdvh 41079  LCDualclcd 41587  HDMapchdma 41793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-mre 17554  df-mrc 17555  df-acs 17557  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-oppg 19285  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lsatoms 38976  df-lshyp 38977  df-lcv 39019  df-lfl 39058  df-lkr 39086  df-ldual 39124  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tgrp 40744  df-tendo 40756  df-edring 40758  df-dveca 41004  df-disoa 41030  df-dvech 41080  df-dib 41140  df-dic 41174  df-dih 41230  df-doch 41349  df-djh 41396  df-lcdual 41588  df-mapd 41626  df-hvmap 41758  df-hdmap1 41794  df-hdmap 41795
This theorem is referenced by:  hdmap14lem13  41881
  Copyright terms: Public domain W3C validator