Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem12 | Structured version Visualization version GIF version |
Description: Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.) |
Ref | Expression |
---|---|
hdmap14lem12.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem12.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem12.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem12.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem12.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem12.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem12.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem12.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem12.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem12.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem12.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
hdmap14lem12.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem12.a | ⊢ 𝐴 = (Base‘𝑃) |
hdmap14lem12.o | ⊢ 0 = (0g‘𝑈) |
hdmap14lem12.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem12.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
Ref | Expression |
---|---|
hdmap14lem12 | ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem12.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap14lem12.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap14lem12.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap14lem12.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑈) | |
5 | hdmap14lem12.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hdmap14lem12.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
7 | hdmap14lem12.c | . . . . . 6 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap14lem12.e | . . . . . 6 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
9 | eqid 2737 | . . . . . 6 ⊢ (LSpan‘𝐶) = (LSpan‘𝐶) | |
10 | hdmap14lem12.p | . . . . . 6 ⊢ 𝑃 = (Scalar‘𝐶) | |
11 | hdmap14lem12.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝑃) | |
12 | hdmap14lem12.s | . . . . . 6 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
13 | hdmap14lem12.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
14 | 13 | 3ad2ant1 1135 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
15 | simp3 1140 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦 ∈ (𝑉 ∖ { 0 })) | |
16 | 15 | eldifad 3878 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦 ∈ 𝑉) |
17 | hdmap14lem12.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
18 | 17 | 3ad2ant1 1135 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝐹 ∈ 𝐵) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18 | hdmap14lem2a 39618 | . . . . 5 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → ∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) |
20 | simp3 1140 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) | |
21 | eqid 2737 | . . . . . . . . 9 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
22 | hdmap14lem12.o | . . . . . . . . 9 ⊢ 0 = (0g‘𝑈) | |
23 | eqid 2737 | . . . . . . . . 9 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
24 | eqid 2737 | . . . . . . . . 9 ⊢ (+g‘𝐶) = (+g‘𝐶) | |
25 | simp11 1205 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝜑) | |
26 | 25, 13 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
27 | hdmap14lem12.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
28 | 25, 27 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
29 | simp13 1207 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝑦 ∈ (𝑉 ∖ { 0 })) | |
30 | 25, 17 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝐹 ∈ 𝐵) |
31 | hdmap14lem12.g | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ 𝐴) | |
32 | 25, 31 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝐺 ∈ 𝐴) |
33 | simp2 1139 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝑔 ∈ 𝐴) | |
34 | simp12 1206 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) | |
35 | 1, 2, 3, 21, 4, 22, 23, 5, 6, 7, 24, 8, 10, 11, 12, 26, 28, 29, 30, 32, 33, 34, 20 | hdmap14lem11 39629 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝐺 = 𝑔) |
36 | 35 | oveq1d 7228 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → (𝐺 ∙ (𝑆‘𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) |
37 | 20, 36 | eqtr4d 2780 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))) |
38 | 37 | rexlimdv3a 3205 | . . . . 5 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦)) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
39 | 19, 38 | mpd 15 | . . . 4 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))) |
40 | 39 | 3expia 1123 | . . 3 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) → (𝑦 ∈ (𝑉 ∖ { 0 }) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
41 | 40 | ralrimiv 3104 | . 2 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) → ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))) |
42 | oveq2 7221 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → (𝐹 · 𝑦) = (𝐹 · 𝑋)) | |
43 | 42 | fveq2d 6721 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑆‘(𝐹 · 𝑦)) = (𝑆‘(𝐹 · 𝑋))) |
44 | fveq2 6717 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → (𝑆‘𝑦) = (𝑆‘𝑋)) | |
45 | 44 | oveq2d 7229 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝐺 ∙ (𝑆‘𝑦)) = (𝐺 ∙ (𝑆‘𝑋))) |
46 | 43, 45 | eqeq12d 2753 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)))) |
47 | 46 | rspcv 3532 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)))) |
48 | 27, 47 | syl 17 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)))) |
49 | 48 | imp 410 | . 2 ⊢ ((𝜑 ∧ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
50 | 41, 49 | impbida 801 | 1 ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ∖ cdif 3863 {csn 4541 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 Scalarcsca 16805 ·𝑠 cvsca 16806 0gc0g 16944 LSpanclspn 20008 HLchlt 37101 LHypclh 37735 DVecHcdvh 38829 LCDualclcd 39337 HDMapchdma 39543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-riotaBAD 36704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-ot 4550 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-undef 8015 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-sca 16818 df-vsca 16819 df-0g 16946 df-mre 17089 df-mrc 17090 df-acs 17092 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-clat 18005 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-cntz 18711 df-oppg 18738 df-lsm 19025 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-dvr 19701 df-drng 19769 df-lmod 19901 df-lss 19969 df-lsp 20009 df-lvec 20140 df-lsatoms 36727 df-lshyp 36728 df-lcv 36770 df-lfl 36809 df-lkr 36837 df-ldual 36875 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-llines 37249 df-lplanes 37250 df-lvols 37251 df-lines 37252 df-psubsp 37254 df-pmap 37255 df-padd 37547 df-lhyp 37739 df-laut 37740 df-ldil 37855 df-ltrn 37856 df-trl 37910 df-tgrp 38494 df-tendo 38506 df-edring 38508 df-dveca 38754 df-disoa 38780 df-dvech 38830 df-dib 38890 df-dic 38924 df-dih 38980 df-doch 39099 df-djh 39146 df-lcdual 39338 df-mapd 39376 df-hvmap 39508 df-hdmap1 39544 df-hdmap 39545 |
This theorem is referenced by: hdmap14lem13 39631 |
Copyright terms: Public domain | W3C validator |