Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap14lem12 Structured version   Visualization version   GIF version

Theorem hdmap14lem12 41346
Description: Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.)
Hypotheses
Ref Expression
hdmap14lem12.h 𝐻 = (LHyp‘𝐾)
hdmap14lem12.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap14lem12.v 𝑉 = (Base‘𝑈)
hdmap14lem12.t · = ( ·𝑠𝑈)
hdmap14lem12.r 𝑅 = (Scalar‘𝑈)
hdmap14lem12.b 𝐵 = (Base‘𝑅)
hdmap14lem12.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap14lem12.e = ( ·𝑠𝐶)
hdmap14lem12.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap14lem12.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap14lem12.f (𝜑𝐹𝐵)
hdmap14lem12.p 𝑃 = (Scalar‘𝐶)
hdmap14lem12.a 𝐴 = (Base‘𝑃)
hdmap14lem12.o 0 = (0g𝑈)
hdmap14lem12.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap14lem12.g (𝜑𝐺𝐴)
Assertion
Ref Expression
hdmap14lem12 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
Distinct variable groups:   𝑦,𝐴   𝑦,   𝑦,𝐹   𝑦,𝐺   𝑦, 0   𝑦,𝑆   𝑦, ·   𝑦,𝑈   𝑦,𝑉   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑦)   𝑃(𝑦)   𝑅(𝑦)   𝐻(𝑦)   𝐾(𝑦)   𝑊(𝑦)

Proof of Theorem hdmap14lem12
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 hdmap14lem12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap14lem12.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap14lem12.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmap14lem12.t . . . . . 6 · = ( ·𝑠𝑈)
5 hdmap14lem12.r . . . . . 6 𝑅 = (Scalar‘𝑈)
6 hdmap14lem12.b . . . . . 6 𝐵 = (Base‘𝑅)
7 hdmap14lem12.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap14lem12.e . . . . . 6 = ( ·𝑠𝐶)
9 eqid 2728 . . . . . 6 (LSpan‘𝐶) = (LSpan‘𝐶)
10 hdmap14lem12.p . . . . . 6 𝑃 = (Scalar‘𝐶)
11 hdmap14lem12.a . . . . . 6 𝐴 = (Base‘𝑃)
12 hdmap14lem12.s . . . . . 6 𝑆 = ((HDMap‘𝐾)‘𝑊)
13 hdmap14lem12.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14133ad2ant1 1131 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp3 1136 . . . . . . 7 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦 ∈ (𝑉 ∖ { 0 }))
1615eldifad 3957 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦𝑉)
17 hdmap14lem12.f . . . . . . 7 (𝜑𝐹𝐵)
18173ad2ant1 1131 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝐹𝐵)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18hdmap14lem2a 41334 . . . . 5 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → ∃𝑔𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)))
20 simp3 1136 . . . . . . 7 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)))
21 eqid 2728 . . . . . . . . 9 (+g𝑈) = (+g𝑈)
22 hdmap14lem12.o . . . . . . . . 9 0 = (0g𝑈)
23 eqid 2728 . . . . . . . . 9 (LSpan‘𝑈) = (LSpan‘𝑈)
24 eqid 2728 . . . . . . . . 9 (+g𝐶) = (+g𝐶)
25 simp11 1201 . . . . . . . . . 10 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝜑)
2625, 13syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 hdmap14lem12.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2825, 27syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
29 simp13 1203 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑦 ∈ (𝑉 ∖ { 0 }))
3025, 17syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐹𝐵)
31 hdmap14lem12.g . . . . . . . . . 10 (𝜑𝐺𝐴)
3225, 31syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐺𝐴)
33 simp2 1135 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑔𝐴)
34 simp12 1202 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
351, 2, 3, 21, 4, 22, 23, 5, 6, 7, 24, 8, 10, 11, 12, 26, 28, 29, 30, 32, 33, 34, 20hdmap14lem11 41345 . . . . . . . 8 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐺 = 𝑔)
3635oveq1d 7429 . . . . . . 7 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝐺 (𝑆𝑦)) = (𝑔 (𝑆𝑦)))
3720, 36eqtr4d 2771 . . . . . 6 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
3837rexlimdv3a 3155 . . . . 5 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (∃𝑔𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
3919, 38mpd 15 . . . 4 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
40393expia 1119 . . 3 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))) → (𝑦 ∈ (𝑉 ∖ { 0 }) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
4140ralrimiv 3141 . 2 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))) → ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
42 oveq2 7422 . . . . . . 7 (𝑦 = 𝑋 → (𝐹 · 𝑦) = (𝐹 · 𝑋))
4342fveq2d 6895 . . . . . 6 (𝑦 = 𝑋 → (𝑆‘(𝐹 · 𝑦)) = (𝑆‘(𝐹 · 𝑋)))
44 fveq2 6891 . . . . . . 7 (𝑦 = 𝑋 → (𝑆𝑦) = (𝑆𝑋))
4544oveq2d 7430 . . . . . 6 (𝑦 = 𝑋 → (𝐺 (𝑆𝑦)) = (𝐺 (𝑆𝑋)))
4643, 45eqeq12d 2744 . . . . 5 (𝑦 = 𝑋 → ((𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) ↔ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4746rspcv 3604 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4827, 47syl 17 . . 3 (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4948imp 406 . 2 ((𝜑 ∧ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
5041, 49impbida 800 1 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3057  wrex 3066  cdif 3942  {csn 4624  cfv 6542  (class class class)co 7414  Basecbs 17173  +gcplusg 17226  Scalarcsca 17229   ·𝑠 cvsca 17230  0gc0g 17414  LSpanclspn 20848  HLchlt 38816  LHypclh 39451  DVecHcdvh 40545  LCDualclcd 41053  HDMapchdma 41259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-riotaBAD 38419
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17416  df-mre 17559  df-mrc 17560  df-acs 17562  df-proset 18280  df-poset 18298  df-plt 18315  df-lub 18331  df-glb 18332  df-join 18333  df-meet 18334  df-p0 18410  df-p1 18411  df-lat 18417  df-clat 18484  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-cntz 19261  df-oppg 19290  df-lsm 19584  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-drng 20619  df-lmod 20738  df-lss 20809  df-lsp 20849  df-lvec 20981  df-lsatoms 38442  df-lshyp 38443  df-lcv 38485  df-lfl 38524  df-lkr 38552  df-ldual 38590  df-oposet 38642  df-ol 38644  df-oml 38645  df-covers 38732  df-ats 38733  df-atl 38764  df-cvlat 38788  df-hlat 38817  df-llines 38965  df-lplanes 38966  df-lvols 38967  df-lines 38968  df-psubsp 38970  df-pmap 38971  df-padd 39263  df-lhyp 39455  df-laut 39456  df-ldil 39571  df-ltrn 39572  df-trl 39626  df-tgrp 40210  df-tendo 40222  df-edring 40224  df-dveca 40470  df-disoa 40496  df-dvech 40546  df-dib 40606  df-dic 40640  df-dih 40696  df-doch 40815  df-djh 40862  df-lcdual 41054  df-mapd 41092  df-hvmap 41224  df-hdmap1 41260  df-hdmap 41261
This theorem is referenced by:  hdmap14lem13  41347
  Copyright terms: Public domain W3C validator