Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap14lem12 Structured version   Visualization version   GIF version

Theorem hdmap14lem12 39893
Description: Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.)
Hypotheses
Ref Expression
hdmap14lem12.h 𝐻 = (LHyp‘𝐾)
hdmap14lem12.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap14lem12.v 𝑉 = (Base‘𝑈)
hdmap14lem12.t · = ( ·𝑠𝑈)
hdmap14lem12.r 𝑅 = (Scalar‘𝑈)
hdmap14lem12.b 𝐵 = (Base‘𝑅)
hdmap14lem12.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap14lem12.e = ( ·𝑠𝐶)
hdmap14lem12.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap14lem12.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap14lem12.f (𝜑𝐹𝐵)
hdmap14lem12.p 𝑃 = (Scalar‘𝐶)
hdmap14lem12.a 𝐴 = (Base‘𝑃)
hdmap14lem12.o 0 = (0g𝑈)
hdmap14lem12.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap14lem12.g (𝜑𝐺𝐴)
Assertion
Ref Expression
hdmap14lem12 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
Distinct variable groups:   𝑦,𝐴   𝑦,   𝑦,𝐹   𝑦,𝐺   𝑦, 0   𝑦,𝑆   𝑦, ·   𝑦,𝑈   𝑦,𝑉   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑦)   𝑃(𝑦)   𝑅(𝑦)   𝐻(𝑦)   𝐾(𝑦)   𝑊(𝑦)

Proof of Theorem hdmap14lem12
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 hdmap14lem12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap14lem12.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap14lem12.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmap14lem12.t . . . . . 6 · = ( ·𝑠𝑈)
5 hdmap14lem12.r . . . . . 6 𝑅 = (Scalar‘𝑈)
6 hdmap14lem12.b . . . . . 6 𝐵 = (Base‘𝑅)
7 hdmap14lem12.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap14lem12.e . . . . . 6 = ( ·𝑠𝐶)
9 eqid 2738 . . . . . 6 (LSpan‘𝐶) = (LSpan‘𝐶)
10 hdmap14lem12.p . . . . . 6 𝑃 = (Scalar‘𝐶)
11 hdmap14lem12.a . . . . . 6 𝐴 = (Base‘𝑃)
12 hdmap14lem12.s . . . . . 6 𝑆 = ((HDMap‘𝐾)‘𝑊)
13 hdmap14lem12.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14133ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp3 1137 . . . . . . 7 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦 ∈ (𝑉 ∖ { 0 }))
1615eldifad 3899 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦𝑉)
17 hdmap14lem12.f . . . . . . 7 (𝜑𝐹𝐵)
18173ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝐹𝐵)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18hdmap14lem2a 39881 . . . . 5 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → ∃𝑔𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)))
20 simp3 1137 . . . . . . 7 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)))
21 eqid 2738 . . . . . . . . 9 (+g𝑈) = (+g𝑈)
22 hdmap14lem12.o . . . . . . . . 9 0 = (0g𝑈)
23 eqid 2738 . . . . . . . . 9 (LSpan‘𝑈) = (LSpan‘𝑈)
24 eqid 2738 . . . . . . . . 9 (+g𝐶) = (+g𝐶)
25 simp11 1202 . . . . . . . . . 10 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝜑)
2625, 13syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 hdmap14lem12.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2825, 27syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
29 simp13 1204 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑦 ∈ (𝑉 ∖ { 0 }))
3025, 17syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐹𝐵)
31 hdmap14lem12.g . . . . . . . . . 10 (𝜑𝐺𝐴)
3225, 31syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐺𝐴)
33 simp2 1136 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑔𝐴)
34 simp12 1203 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
351, 2, 3, 21, 4, 22, 23, 5, 6, 7, 24, 8, 10, 11, 12, 26, 28, 29, 30, 32, 33, 34, 20hdmap14lem11 39892 . . . . . . . 8 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐺 = 𝑔)
3635oveq1d 7290 . . . . . . 7 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝐺 (𝑆𝑦)) = (𝑔 (𝑆𝑦)))
3720, 36eqtr4d 2781 . . . . . 6 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
3837rexlimdv3a 3215 . . . . 5 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (∃𝑔𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
3919, 38mpd 15 . . . 4 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
40393expia 1120 . . 3 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))) → (𝑦 ∈ (𝑉 ∖ { 0 }) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
4140ralrimiv 3102 . 2 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))) → ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
42 oveq2 7283 . . . . . . 7 (𝑦 = 𝑋 → (𝐹 · 𝑦) = (𝐹 · 𝑋))
4342fveq2d 6778 . . . . . 6 (𝑦 = 𝑋 → (𝑆‘(𝐹 · 𝑦)) = (𝑆‘(𝐹 · 𝑋)))
44 fveq2 6774 . . . . . . 7 (𝑦 = 𝑋 → (𝑆𝑦) = (𝑆𝑋))
4544oveq2d 7291 . . . . . 6 (𝑦 = 𝑋 → (𝐺 (𝑆𝑦)) = (𝐺 (𝑆𝑋)))
4643, 45eqeq12d 2754 . . . . 5 (𝑦 = 𝑋 → ((𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) ↔ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4746rspcv 3557 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4827, 47syl 17 . . 3 (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4948imp 407 . 2 ((𝜑 ∧ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
5041, 49impbida 798 1 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cdif 3884  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  LSpanclspn 20233  HLchlt 37364  LHypclh 37998  DVecHcdvh 39092  LCDualclcd 39600  HDMapchdma 39806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mre 17295  df-mrc 17296  df-acs 17298  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-oppg 18950  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-lshyp 36991  df-lcv 37033  df-lfl 37072  df-lkr 37100  df-ldual 37138  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tgrp 38757  df-tendo 38769  df-edring 38771  df-dveca 39017  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243  df-doch 39362  df-djh 39409  df-lcdual 39601  df-mapd 39639  df-hvmap 39771  df-hdmap1 39807  df-hdmap 39808
This theorem is referenced by:  hdmap14lem13  39894
  Copyright terms: Public domain W3C validator