Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap14lem12 Structured version   Visualization version   GIF version

Theorem hdmap14lem12 41862
Description: Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.)
Hypotheses
Ref Expression
hdmap14lem12.h 𝐻 = (LHyp‘𝐾)
hdmap14lem12.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap14lem12.v 𝑉 = (Base‘𝑈)
hdmap14lem12.t · = ( ·𝑠𝑈)
hdmap14lem12.r 𝑅 = (Scalar‘𝑈)
hdmap14lem12.b 𝐵 = (Base‘𝑅)
hdmap14lem12.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap14lem12.e = ( ·𝑠𝐶)
hdmap14lem12.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap14lem12.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap14lem12.f (𝜑𝐹𝐵)
hdmap14lem12.p 𝑃 = (Scalar‘𝐶)
hdmap14lem12.a 𝐴 = (Base‘𝑃)
hdmap14lem12.o 0 = (0g𝑈)
hdmap14lem12.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap14lem12.g (𝜑𝐺𝐴)
Assertion
Ref Expression
hdmap14lem12 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
Distinct variable groups:   𝑦,𝐴   𝑦,   𝑦,𝐹   𝑦,𝐺   𝑦, 0   𝑦,𝑆   𝑦, ·   𝑦,𝑈   𝑦,𝑉   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑦)   𝑃(𝑦)   𝑅(𝑦)   𝐻(𝑦)   𝐾(𝑦)   𝑊(𝑦)

Proof of Theorem hdmap14lem12
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 hdmap14lem12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap14lem12.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap14lem12.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmap14lem12.t . . . . . 6 · = ( ·𝑠𝑈)
5 hdmap14lem12.r . . . . . 6 𝑅 = (Scalar‘𝑈)
6 hdmap14lem12.b . . . . . 6 𝐵 = (Base‘𝑅)
7 hdmap14lem12.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap14lem12.e . . . . . 6 = ( ·𝑠𝐶)
9 eqid 2735 . . . . . 6 (LSpan‘𝐶) = (LSpan‘𝐶)
10 hdmap14lem12.p . . . . . 6 𝑃 = (Scalar‘𝐶)
11 hdmap14lem12.a . . . . . 6 𝐴 = (Base‘𝑃)
12 hdmap14lem12.s . . . . . 6 𝑆 = ((HDMap‘𝐾)‘𝑊)
13 hdmap14lem12.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14133ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp3 1137 . . . . . . 7 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦 ∈ (𝑉 ∖ { 0 }))
1615eldifad 3975 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦𝑉)
17 hdmap14lem12.f . . . . . . 7 (𝜑𝐹𝐵)
18173ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝐹𝐵)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18hdmap14lem2a 41850 . . . . 5 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → ∃𝑔𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)))
20 simp3 1137 . . . . . . 7 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)))
21 eqid 2735 . . . . . . . . 9 (+g𝑈) = (+g𝑈)
22 hdmap14lem12.o . . . . . . . . 9 0 = (0g𝑈)
23 eqid 2735 . . . . . . . . 9 (LSpan‘𝑈) = (LSpan‘𝑈)
24 eqid 2735 . . . . . . . . 9 (+g𝐶) = (+g𝐶)
25 simp11 1202 . . . . . . . . . 10 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝜑)
2625, 13syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 hdmap14lem12.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2825, 27syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
29 simp13 1204 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑦 ∈ (𝑉 ∖ { 0 }))
3025, 17syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐹𝐵)
31 hdmap14lem12.g . . . . . . . . . 10 (𝜑𝐺𝐴)
3225, 31syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐺𝐴)
33 simp2 1136 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑔𝐴)
34 simp12 1203 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
351, 2, 3, 21, 4, 22, 23, 5, 6, 7, 24, 8, 10, 11, 12, 26, 28, 29, 30, 32, 33, 34, 20hdmap14lem11 41861 . . . . . . . 8 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐺 = 𝑔)
3635oveq1d 7446 . . . . . . 7 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝐺 (𝑆𝑦)) = (𝑔 (𝑆𝑦)))
3720, 36eqtr4d 2778 . . . . . 6 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
3837rexlimdv3a 3157 . . . . 5 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (∃𝑔𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
3919, 38mpd 15 . . . 4 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
40393expia 1120 . . 3 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))) → (𝑦 ∈ (𝑉 ∖ { 0 }) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
4140ralrimiv 3143 . 2 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))) → ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
42 oveq2 7439 . . . . . . 7 (𝑦 = 𝑋 → (𝐹 · 𝑦) = (𝐹 · 𝑋))
4342fveq2d 6911 . . . . . 6 (𝑦 = 𝑋 → (𝑆‘(𝐹 · 𝑦)) = (𝑆‘(𝐹 · 𝑋)))
44 fveq2 6907 . . . . . . 7 (𝑦 = 𝑋 → (𝑆𝑦) = (𝑆𝑋))
4544oveq2d 7447 . . . . . 6 (𝑦 = 𝑋 → (𝐺 (𝑆𝑦)) = (𝐺 (𝑆𝑋)))
4643, 45eqeq12d 2751 . . . . 5 (𝑦 = 𝑋 → ((𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) ↔ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4746rspcv 3618 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4827, 47syl 17 . . 3 (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4948imp 406 . 2 ((𝜑 ∧ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
5041, 49impbida 801 1 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cdif 3960  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  LSpanclspn 20987  HLchlt 39332  LHypclh 39967  DVecHcdvh 41061  LCDualclcd 41569  HDMapchdma 41775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-oppg 19377  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-nzr 20530  df-rlreg 20711  df-domn 20712  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38958  df-lshyp 38959  df-lcv 39001  df-lfl 39040  df-lkr 39068  df-ldual 39106  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tgrp 40726  df-tendo 40738  df-edring 40740  df-dveca 40986  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212  df-doch 41331  df-djh 41378  df-lcdual 41570  df-mapd 41608  df-hvmap 41740  df-hdmap1 41776  df-hdmap 41777
This theorem is referenced by:  hdmap14lem13  41863
  Copyright terms: Public domain W3C validator