![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmaprnlem2N | Structured version Visualization version GIF version |
Description: Lemma for hgmaprnN 37977. Part 15 of [Baer] p. 50 line 20. We only require a subset relation, rather than equality, so that the case of zero 𝑧 is taken care of automatically. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hgmaprnlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hgmaprnlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hgmaprnlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
hgmaprnlem1.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hgmaprnlem1.b | ⊢ 𝐵 = (Base‘𝑅) |
hgmaprnlem1.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hgmaprnlem1.o | ⊢ 0 = (0g‘𝑈) |
hgmaprnlem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hgmaprnlem1.d | ⊢ 𝐷 = (Base‘𝐶) |
hgmaprnlem1.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hgmaprnlem1.a | ⊢ 𝐴 = (Base‘𝑃) |
hgmaprnlem1.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hgmaprnlem1.q | ⊢ 𝑄 = (0g‘𝐶) |
hgmaprnlem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hgmaprnlem1.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hgmaprnlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hgmaprnlem1.z | ⊢ (𝜑 → 𝑧 ∈ 𝐴) |
hgmaprnlem1.t2 | ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) |
hgmaprnlem1.s2 | ⊢ (𝜑 → 𝑠 ∈ 𝑉) |
hgmaprnlem1.sz | ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) |
hgmaprnlem1.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hgmaprnlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hgmaprnlem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
Ref | Expression |
---|---|
hgmaprnlem2N | ⊢ (𝜑 → (𝑁‘{𝑠}) ⊆ (𝑁‘{𝑡})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmaprnlem1.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hgmaprnlem1.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
3 | hgmaprnlem1.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | lcdlmod 37668 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | hgmaprnlem1.z | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝐴) | |
6 | hgmaprnlem1.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | hgmaprnlem1.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
8 | hgmaprnlem1.d | . . . . 5 ⊢ 𝐷 = (Base‘𝐶) | |
9 | hgmaprnlem1.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
10 | hgmaprnlem1.t2 | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) | |
11 | 10 | eldifad 3811 | . . . . 5 ⊢ (𝜑 → 𝑡 ∈ 𝑉) |
12 | 1, 6, 7, 2, 8, 9, 3, 11 | hdmapcl 37906 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑡) ∈ 𝐷) |
13 | hgmaprnlem1.p | . . . . 5 ⊢ 𝑃 = (Scalar‘𝐶) | |
14 | hgmaprnlem1.a | . . . . 5 ⊢ 𝐴 = (Base‘𝑃) | |
15 | hgmaprnlem1.e | . . . . 5 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
16 | hgmaprnlem1.l | . . . . 5 ⊢ 𝐿 = (LSpan‘𝐶) | |
17 | 13, 14, 8, 15, 16 | lspsnvsi 19364 | . . . 4 ⊢ ((𝐶 ∈ LMod ∧ 𝑧 ∈ 𝐴 ∧ (𝑆‘𝑡) ∈ 𝐷) → (𝐿‘{(𝑧 ∙ (𝑆‘𝑡))}) ⊆ (𝐿‘{(𝑆‘𝑡)})) |
18 | 4, 5, 12, 17 | syl3anc 1496 | . . 3 ⊢ (𝜑 → (𝐿‘{(𝑧 ∙ (𝑆‘𝑡))}) ⊆ (𝐿‘{(𝑆‘𝑡)})) |
19 | hgmaprnlem1.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
20 | hgmaprnlem1.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
21 | hgmaprnlem1.s2 | . . . . 5 ⊢ (𝜑 → 𝑠 ∈ 𝑉) | |
22 | 1, 6, 7, 19, 2, 16, 20, 9, 3, 21 | hdmap10 37916 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑠})) = (𝐿‘{(𝑆‘𝑠)})) |
23 | hgmaprnlem1.sz | . . . . . 6 ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) | |
24 | 23 | sneqd 4410 | . . . . 5 ⊢ (𝜑 → {(𝑆‘𝑠)} = {(𝑧 ∙ (𝑆‘𝑡))}) |
25 | 24 | fveq2d 6438 | . . . 4 ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑠)}) = (𝐿‘{(𝑧 ∙ (𝑆‘𝑡))})) |
26 | 22, 25 | eqtrd 2862 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑠})) = (𝐿‘{(𝑧 ∙ (𝑆‘𝑡))})) |
27 | 1, 6, 7, 19, 2, 16, 20, 9, 3, 11 | hdmap10 37916 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{(𝑆‘𝑡)})) |
28 | 18, 26, 27 | 3sstr4d 3874 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑠})) ⊆ (𝑀‘(𝑁‘{𝑡}))) |
29 | eqid 2826 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
30 | 1, 6, 3 | dvhlmod 37186 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
31 | 7, 29, 19 | lspsncl 19337 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑠 ∈ 𝑉) → (𝑁‘{𝑠}) ∈ (LSubSp‘𝑈)) |
32 | 30, 21, 31 | syl2anc 581 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑠}) ∈ (LSubSp‘𝑈)) |
33 | 7, 29, 19 | lspsncl 19337 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ 𝑡 ∈ 𝑉) → (𝑁‘{𝑡}) ∈ (LSubSp‘𝑈)) |
34 | 30, 11, 33 | syl2anc 581 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑡}) ∈ (LSubSp‘𝑈)) |
35 | 1, 6, 29, 20, 3, 32, 34 | mapdord 37714 | . 2 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑠})) ⊆ (𝑀‘(𝑁‘{𝑡})) ↔ (𝑁‘{𝑠}) ⊆ (𝑁‘{𝑡}))) |
36 | 28, 35 | mpbid 224 | 1 ⊢ (𝜑 → (𝑁‘{𝑠}) ⊆ (𝑁‘{𝑡})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∖ cdif 3796 ⊆ wss 3799 {csn 4398 ‘cfv 6124 (class class class)co 6906 Basecbs 16223 Scalarcsca 16309 ·𝑠 cvsca 16310 0gc0g 16454 LModclmod 19220 LSubSpclss 19289 LSpanclspn 19331 HLchlt 35426 LHypclh 36060 DVecHcdvh 37154 LCDualclcd 37662 mapdcmpd 37700 HDMapchdma 37868 HGMapchg 37959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-riotaBAD 35029 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-ot 4407 df-uni 4660 df-int 4699 df-iun 4743 df-iin 4744 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-of 7158 df-om 7328 df-1st 7429 df-2nd 7430 df-tpos 7618 df-undef 7665 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-map 8125 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-sets 16230 df-ress 16231 df-plusg 16319 df-mulr 16320 df-sca 16322 df-vsca 16323 df-0g 16456 df-mre 16600 df-mrc 16601 df-acs 16603 df-proset 17282 df-poset 17300 df-plt 17312 df-lub 17328 df-glb 17329 df-join 17330 df-meet 17331 df-p0 17393 df-p1 17394 df-lat 17400 df-clat 17462 df-mgm 17596 df-sgrp 17638 df-mnd 17649 df-submnd 17690 df-grp 17780 df-minusg 17781 df-sbg 17782 df-subg 17943 df-cntz 18101 df-oppg 18127 df-lsm 18403 df-cmn 18549 df-abl 18550 df-mgp 18845 df-ur 18857 df-ring 18904 df-oppr 18978 df-dvdsr 18996 df-unit 18997 df-invr 19027 df-dvr 19038 df-drng 19106 df-lmod 19222 df-lss 19290 df-lsp 19332 df-lvec 19463 df-lsatoms 35052 df-lshyp 35053 df-lcv 35095 df-lfl 35134 df-lkr 35162 df-ldual 35200 df-oposet 35252 df-ol 35254 df-oml 35255 df-covers 35342 df-ats 35343 df-atl 35374 df-cvlat 35398 df-hlat 35427 df-llines 35574 df-lplanes 35575 df-lvols 35576 df-lines 35577 df-psubsp 35579 df-pmap 35580 df-padd 35872 df-lhyp 36064 df-laut 36065 df-ldil 36180 df-ltrn 36181 df-trl 36235 df-tgrp 36819 df-tendo 36831 df-edring 36833 df-dveca 37079 df-disoa 37105 df-dvech 37155 df-dib 37215 df-dic 37249 df-dih 37305 df-doch 37424 df-djh 37471 df-lcdual 37663 df-mapd 37701 df-hvmap 37833 df-hdmap1 37869 df-hdmap 37870 |
This theorem is referenced by: hgmaprnlem3N 37974 |
Copyright terms: Public domain | W3C validator |