Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sqr3nconstr Structured version   Visualization version   GIF version

Theorem 2sqr3nconstr 33779
Description: Doubling the cube is an impossible construction, i.e. the cube root of 2 is not constructible with straightedge and compass. Given a cube of edge of length one, a cube of double volume would have an edge of length (2↑𝑐(1 / 3)), however that number is not constructible. This is the first part of Metamath 100 proof #8. Theorem 7.13 of [Stewart] p. 99. (Contributed by Thierry Arnoux and Saveliy Skresanov, 26-Oct-2025.)
Assertion
Ref Expression
2sqr3nconstr (2↑𝑐(1 / 3)) ∉ Constr

Proof of Theorem 2sqr3nconstr
StepHypRef Expression
1 eqid 2730 . . . 4 (deg1‘(ℂflds ℚ)) = (deg1‘(ℂflds ℚ))
2 eqid 2730 . . . 4 (ℂfld minPoly ℚ) = (ℂfld minPoly ℚ)
3 2cnd 12275 . . . . 5 (⊤ → 2 ∈ ℂ)
4 3cn 12278 . . . . . . 7 3 ∈ ℂ
5 3ne0 12303 . . . . . . 7 3 ≠ 0
64, 5reccli 11928 . . . . . 6 (1 / 3) ∈ ℂ
76a1i 11 . . . . 5 (⊤ → (1 / 3) ∈ ℂ)
83, 7cxpcld 26624 . . . 4 (⊤ → (2↑𝑐(1 / 3)) ∈ ℂ)
9 eqidd 2731 . . . 4 (⊤ → ((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3))) = ((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3))))
10 eqid 2730 . . . . . . . . . 10 (ℂflds ℚ) = (ℂflds ℚ)
11 eqid 2730 . . . . . . . . . 10 (-g‘(Poly1‘(ℂflds ℚ))) = (-g‘(Poly1‘(ℂflds ℚ)))
12 eqid 2730 . . . . . . . . . 10 (.g‘(mulGrp‘(Poly1‘(ℂflds ℚ)))) = (.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))
13 eqid 2730 . . . . . . . . . 10 (Poly1‘(ℂflds ℚ)) = (Poly1‘(ℂflds ℚ))
14 eqid 2730 . . . . . . . . . 10 (algSc‘(Poly1‘(ℂflds ℚ))) = (algSc‘(Poly1‘(ℂflds ℚ)))
15 eqid 2730 . . . . . . . . . 10 (var1‘(ℂflds ℚ)) = (var1‘(ℂflds ℚ))
16 eqid 2730 . . . . . . . . . 10 ((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2)) = ((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2))
17 eqid 2730 . . . . . . . . . 10 (2↑𝑐(1 / 3)) = (2↑𝑐(1 / 3))
1810, 11, 12, 13, 14, 15, 1, 16, 17, 22sqr3minply 33778 . . . . . . . . 9 (((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2)) = ((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3))) ∧ ((deg1‘(ℂflds ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2))) = 3)
1918simpli 483 . . . . . . . 8 ((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2)) = ((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))
2019fveq2i 6868 . . . . . . 7 ((deg1‘(ℂflds ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2))) = ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3))))
2118simpri 485 . . . . . . 7 ((deg1‘(ℂflds ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2))) = 3
2220, 21eqtr3i 2755 . . . . . 6 ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) = 3
23 3nn0 12476 . . . . . 6 3 ∈ ℕ0
2422, 23eqeltri 2825 . . . . 5 ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) ∈ ℕ0
2524a1i 11 . . . 4 (⊤ → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) ∈ ℕ0)
2622a1i 11 . . . . . 6 (𝑛 ∈ ℕ0 → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) = 3)
27 3z 12582 . . . . . . . . . . 11 3 ∈ ℤ
28 iddvds 16246 . . . . . . . . . . 11 (3 ∈ ℤ → 3 ∥ 3)
2927, 28ax-mp 5 . . . . . . . . . 10 3 ∥ 3
30 simpr 484 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = (2↑𝑛))
3129, 30breqtrid 5152 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 ∥ (2↑𝑛))
32 3prm 16670 . . . . . . . . . . 11 3 ∈ ℙ
33 2prm 16668 . . . . . . . . . . 11 2 ∈ ℙ
34 prmdvdsexpr 16693 . . . . . . . . . . 11 ((3 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (3 ∥ (2↑𝑛) → 3 = 2))
3532, 33, 34mp3an12 1453 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (3 ∥ (2↑𝑛) → 3 = 2))
3635imp 406 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 ∥ (2↑𝑛)) → 3 = 2)
3731, 36syldan 591 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = 2)
38 2re 12271 . . . . . . . . . . 11 2 ∈ ℝ
39 2lt3 12369 . . . . . . . . . . 11 2 < 3
4038, 39gtneii 11304 . . . . . . . . . 10 3 ≠ 2
4140neii 2929 . . . . . . . . 9 ¬ 3 = 2
4241a1i 11 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → ¬ 3 = 2)
4337, 42pm2.65da 816 . . . . . . 7 (𝑛 ∈ ℕ0 → ¬ 3 = (2↑𝑛))
4443neqned 2934 . . . . . 6 (𝑛 ∈ ℕ0 → 3 ≠ (2↑𝑛))
4526, 44eqnetrd 2994 . . . . 5 (𝑛 ∈ ℕ0 → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) ≠ (2↑𝑛))
4645adantl 481 . . . 4 ((⊤ ∧ 𝑛 ∈ ℕ0) → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) ≠ (2↑𝑛))
471, 2, 8, 9, 25, 46constrcon 33772 . . 3 (⊤ → ¬ (2↑𝑐(1 / 3)) ∈ Constr)
4847mptru 1547 . 2 ¬ (2↑𝑐(1 / 3)) ∈ Constr
4948nelir 3034 1 (2↑𝑐(1 / 3)) ∉ Constr
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2927  wnel 3031   class class class wbr 5115  cfv 6519  (class class class)co 7394  cc 11084  1c1 11087   / cdiv 11851  2c2 12252  3c3 12253  0cn0 12458  cz 12545  cq 12921  cexp 14036  cdvds 16229  cprime 16647  s cress 17206  -gcsg 18873  .gcmg 19005  mulGrpcmgp 20055  fldccnfld 21270  algSccascl 21767  var1cv1 22066  Poly1cpl1 22067  deg1cdg1 25966  𝑐ccxp 26471   minPoly cminply 33697  Constrcconstr 33727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-reg 9563  ax-inf2 9612  ax-ac2 10434  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164  ax-addf 11165  ax-mulf 11166
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-ofr 7661  df-rpss 7706  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-oadd 8447  df-er 8682  df-ec 8684  df-qs 8688  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9331  df-fi 9380  df-sup 9411  df-inf 9412  df-oi 9481  df-r1 9735  df-rank 9736  df-dju 9872  df-card 9910  df-acn 9913  df-ac 10087  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-xnn0 12532  df-z 12546  df-dec 12666  df-uz 12810  df-q 12922  df-rp 12966  df-xneg 13085  df-xadd 13086  df-xmul 13087  df-ioo 13323  df-ioc 13324  df-ico 13325  df-icc 13326  df-fz 13482  df-fzo 13629  df-fl 13766  df-mod 13844  df-seq 13977  df-exp 14037  df-fac 14249  df-bc 14278  df-hash 14306  df-word 14489  df-lsw 14538  df-concat 14546  df-s1 14571  df-substr 14616  df-pfx 14646  df-shft 15043  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16471  df-prm 16648  df-numer 16711  df-denom 16712  df-pc 16814  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ocomp 17247  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-pws 17418  df-xrs 17471  df-qtop 17476  df-imas 17477  df-qus 17478  df-xps 17479  df-mre 17553  df-mrc 17554  df-mri 17555  df-acs 17556  df-proset 18261  df-drs 18262  df-poset 18280  df-ipo 18493  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-nsg 19062  df-eqg 19063  df-ghm 19151  df-gim 19197  df-cntz 19255  df-oppg 19284  df-lsm 19572  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-srg 20102  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-irred 20274  df-invr 20303  df-dvr 20316  df-rhm 20387  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-sdrg 20702  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lmhm 20935  df-lmim 20936  df-lmic 20937  df-lbs 20988  df-lvec 21016  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-2idl 21166  df-lpidl 21238  df-lpir 21239  df-pid 21253  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-cnfld 21271  df-dsmm 21647  df-frlm 21662  df-uvc 21698  df-lindf 21721  df-linds 21722  df-assa 21768  df-asp 21769  df-ascl 21770  df-psr 21824  df-mvr 21825  df-mpl 21826  df-opsr 21828  df-evls 21987  df-evl 21988  df-psr1 22070  df-vr1 22071  df-ply1 22072  df-coe1 22073  df-evls1 22208  df-evl1 22209  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-lp 23029  df-perf 23030  df-cn 23120  df-cnp 23121  df-haus 23208  df-tx 23455  df-hmeo 23648  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-xms 24214  df-ms 24215  df-tms 24216  df-cncf 24777  df-limc 25774  df-dv 25775  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-ig1p 26047  df-log 26472  df-cxp 26473  df-chn 32939  df-fldgen 33269  df-mxidl 33439  df-dim 33603  df-fldext 33645  df-extdg 33646  df-irng 33687  df-minply 33698  df-constr 33728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator