Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sqr3nconstr Structured version   Visualization version   GIF version

Theorem 2sqr3nconstr 33747
Description: Doubling the cube is an impossible construction, i.e. the cube root of 2 is not constructible with straightedge and compass. Given a cube of edge of length one, a cube of double volume would have an edge of length (2↑𝑐(1 / 3)), however that number is not constructible. This is the first part of Metamath 100 proof #8. Theorem 7.13 of [Stewart] p. 99. (Contributed by Thierry Arnoux and Saveliy Skresanov, 26-Oct-2025.)
Assertion
Ref Expression
2sqr3nconstr (2↑𝑐(1 / 3)) ∉ Constr

Proof of Theorem 2sqr3nconstr
StepHypRef Expression
1 eqid 2729 . . . 4 (deg1‘(ℂflds ℚ)) = (deg1‘(ℂflds ℚ))
2 eqid 2729 . . . 4 (ℂfld minPoly ℚ) = (ℂfld minPoly ℚ)
3 2cnd 12224 . . . . 5 (⊤ → 2 ∈ ℂ)
4 3cn 12227 . . . . . . 7 3 ∈ ℂ
5 3ne0 12252 . . . . . . 7 3 ≠ 0
64, 5reccli 11872 . . . . . 6 (1 / 3) ∈ ℂ
76a1i 11 . . . . 5 (⊤ → (1 / 3) ∈ ℂ)
83, 7cxpcld 26633 . . . 4 (⊤ → (2↑𝑐(1 / 3)) ∈ ℂ)
9 eqidd 2730 . . . 4 (⊤ → ((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3))) = ((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3))))
10 eqid 2729 . . . . . . . . . 10 (ℂflds ℚ) = (ℂflds ℚ)
11 eqid 2729 . . . . . . . . . 10 (-g‘(Poly1‘(ℂflds ℚ))) = (-g‘(Poly1‘(ℂflds ℚ)))
12 eqid 2729 . . . . . . . . . 10 (.g‘(mulGrp‘(Poly1‘(ℂflds ℚ)))) = (.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))
13 eqid 2729 . . . . . . . . . 10 (Poly1‘(ℂflds ℚ)) = (Poly1‘(ℂflds ℚ))
14 eqid 2729 . . . . . . . . . 10 (algSc‘(Poly1‘(ℂflds ℚ))) = (algSc‘(Poly1‘(ℂflds ℚ)))
15 eqid 2729 . . . . . . . . . 10 (var1‘(ℂflds ℚ)) = (var1‘(ℂflds ℚ))
16 eqid 2729 . . . . . . . . . 10 ((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2)) = ((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2))
17 eqid 2729 . . . . . . . . . 10 (2↑𝑐(1 / 3)) = (2↑𝑐(1 / 3))
1810, 11, 12, 13, 14, 15, 1, 16, 17, 22sqr3minply 33746 . . . . . . . . 9 (((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2)) = ((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3))) ∧ ((deg1‘(ℂflds ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2))) = 3)
1918simpli 483 . . . . . . . 8 ((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2)) = ((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))
2019fveq2i 6829 . . . . . . 7 ((deg1‘(ℂflds ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2))) = ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3))))
2118simpri 485 . . . . . . 7 ((deg1‘(ℂflds ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂflds ℚ))))(var1‘(ℂflds ℚ)))(-g‘(Poly1‘(ℂflds ℚ)))((algSc‘(Poly1‘(ℂflds ℚ)))‘2))) = 3
2220, 21eqtr3i 2754 . . . . . 6 ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) = 3
23 3nn0 12420 . . . . . 6 3 ∈ ℕ0
2422, 23eqeltri 2824 . . . . 5 ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) ∈ ℕ0
2524a1i 11 . . . 4 (⊤ → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) ∈ ℕ0)
2622a1i 11 . . . . . 6 (𝑛 ∈ ℕ0 → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) = 3)
27 3z 12526 . . . . . . . . . . 11 3 ∈ ℤ
28 iddvds 16198 . . . . . . . . . . 11 (3 ∈ ℤ → 3 ∥ 3)
2927, 28ax-mp 5 . . . . . . . . . 10 3 ∥ 3
30 simpr 484 . . . . . . . . . 10 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = (2↑𝑛))
3129, 30breqtrid 5132 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 ∥ (2↑𝑛))
32 3prm 16623 . . . . . . . . . . 11 3 ∈ ℙ
33 2prm 16621 . . . . . . . . . . 11 2 ∈ ℙ
34 prmdvdsexpr 16646 . . . . . . . . . . 11 ((3 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (3 ∥ (2↑𝑛) → 3 = 2))
3532, 33, 34mp3an12 1453 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (3 ∥ (2↑𝑛) → 3 = 2))
3635imp 406 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 ∥ (2↑𝑛)) → 3 = 2)
3731, 36syldan 591 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = 2)
38 2re 12220 . . . . . . . . . . 11 2 ∈ ℝ
39 2lt3 12313 . . . . . . . . . . 11 2 < 3
4038, 39gtneii 11246 . . . . . . . . . 10 3 ≠ 2
4140neii 2927 . . . . . . . . 9 ¬ 3 = 2
4241a1i 11 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → ¬ 3 = 2)
4337, 42pm2.65da 816 . . . . . . 7 (𝑛 ∈ ℕ0 → ¬ 3 = (2↑𝑛))
4443neqned 2932 . . . . . 6 (𝑛 ∈ ℕ0 → 3 ≠ (2↑𝑛))
4526, 44eqnetrd 2992 . . . . 5 (𝑛 ∈ ℕ0 → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) ≠ (2↑𝑛))
4645adantl 481 . . . 4 ((⊤ ∧ 𝑛 ∈ ℕ0) → ((deg1‘(ℂflds ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) ≠ (2↑𝑛))
471, 2, 8, 9, 25, 46constrcon 33740 . . 3 (⊤ → ¬ (2↑𝑐(1 / 3)) ∈ Constr)
4847mptru 1547 . 2 ¬ (2↑𝑐(1 / 3)) ∈ Constr
4948nelir 3032 1 (2↑𝑐(1 / 3)) ∉ Constr
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wnel 3029   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  1c1 11029   / cdiv 11795  2c2 12201  3c3 12202  0cn0 12402  cz 12489  cq 12867  cexp 13986  cdvds 16181  cprime 16600  s cress 17159  -gcsg 18832  .gcmg 18964  mulGrpcmgp 20043  fldccnfld 21279  algSccascl 21777  var1cv1 22076  Poly1cpl1 22077  deg1cdg1 25975  𝑐ccxp 26480   minPoly cminply 33665  Constrcconstr 33695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-pi 15997  df-dvds 16182  df-gcd 16424  df-prm 16601  df-numer 16664  df-denom 16665  df-pc 16767  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ocomp 17200  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-pws 17371  df-xrs 17424  df-qtop 17429  df-imas 17430  df-qus 17431  df-xps 17432  df-mre 17506  df-mrc 17507  df-mri 17508  df-acs 17509  df-proset 18218  df-drs 18219  df-poset 18237  df-ipo 18452  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-nsg 19021  df-eqg 19022  df-ghm 19110  df-gim 19156  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-srg 20090  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-irred 20262  df-invr 20291  df-dvr 20304  df-rhm 20375  df-nzr 20416  df-subrng 20449  df-subrg 20473  df-rlreg 20597  df-domn 20598  df-idom 20599  df-drng 20634  df-field 20635  df-sdrg 20690  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lmhm 20944  df-lmim 20945  df-lmic 20946  df-lbs 20997  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-2idl 21175  df-lpidl 21247  df-lpir 21248  df-pid 21262  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-dsmm 21657  df-frlm 21672  df-uvc 21708  df-lindf 21731  df-linds 21732  df-assa 21778  df-asp 21779  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-evls 21997  df-evl 21998  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-coe1 22083  df-evls1 22218  df-evl1 22219  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-mdeg 25976  df-deg1 25977  df-mon1 26052  df-uc1p 26053  df-q1p 26054  df-r1p 26055  df-ig1p 26056  df-log 26481  df-cxp 26482  df-chn 32960  df-fldgen 33260  df-mxidl 33407  df-dim 33571  df-fldext 33613  df-extdg 33614  df-irng 33655  df-minply 33666  df-constr 33696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator