| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2sqr3nconstr | Structured version Visualization version GIF version | ||
| Description: Doubling the cube is an impossible construction, i.e. the cube root of 2 is not constructible with straightedge and compass. Given a cube of edge of length one, a cube of double volume would have an edge of length (2↑𝑐(1 / 3)), however that number is not constructible. This is the first part of Metamath 100 proof #8. Theorem 7.13 of [Stewart] p. 99. (Contributed by Thierry Arnoux and Saveliy Skresanov, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| 2sqr3nconstr | ⊢ (2↑𝑐(1 / 3)) ∉ Constr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (deg1‘(ℂfld ↾s ℚ)) = (deg1‘(ℂfld ↾s ℚ)) | |
| 2 | eqid 2733 | . . . 4 ⊢ (ℂfld minPoly ℚ) = (ℂfld minPoly ℚ) | |
| 3 | 2cnd 12213 | . . . . 5 ⊢ (⊤ → 2 ∈ ℂ) | |
| 4 | 3cn 12216 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
| 5 | 3ne0 12241 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 6 | 4, 5 | reccli 11861 | . . . . . 6 ⊢ (1 / 3) ∈ ℂ |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (⊤ → (1 / 3) ∈ ℂ) |
| 8 | 3, 7 | cxpcld 26654 | . . . 4 ⊢ (⊤ → (2↑𝑐(1 / 3)) ∈ ℂ) |
| 9 | eqidd 2734 | . . . 4 ⊢ (⊤ → ((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3))) = ((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) | |
| 10 | eqid 2733 | . . . . . . . . . 10 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
| 11 | eqid 2733 | . . . . . . . . . 10 ⊢ (-g‘(Poly1‘(ℂfld ↾s ℚ))) = (-g‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 12 | eqid 2733 | . . . . . . . . . 10 ⊢ (.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ)))) = (.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ)))) | |
| 13 | eqid 2733 | . . . . . . . . . 10 ⊢ (Poly1‘(ℂfld ↾s ℚ)) = (Poly1‘(ℂfld ↾s ℚ)) | |
| 14 | eqid 2733 | . . . . . . . . . 10 ⊢ (algSc‘(Poly1‘(ℂfld ↾s ℚ))) = (algSc‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 15 | eqid 2733 | . . . . . . . . . 10 ⊢ (var1‘(ℂfld ↾s ℚ)) = (var1‘(ℂfld ↾s ℚ)) | |
| 16 | eqid 2733 | . . . . . . . . . 10 ⊢ ((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(-g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘2)) = ((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(-g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘2)) | |
| 17 | eqid 2733 | . . . . . . . . . 10 ⊢ (2↑𝑐(1 / 3)) = (2↑𝑐(1 / 3)) | |
| 18 | 10, 11, 12, 13, 14, 15, 1, 16, 17, 2 | 2sqr3minply 33804 | . . . . . . . . 9 ⊢ (((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(-g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘2)) = ((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3))) ∧ ((deg1‘(ℂfld ↾s ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(-g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘2))) = 3) |
| 19 | 18 | simpli 483 | . . . . . . . 8 ⊢ ((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(-g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘2)) = ((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3))) |
| 20 | 19 | fveq2i 6834 | . . . . . . 7 ⊢ ((deg1‘(ℂfld ↾s ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(-g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘2))) = ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) |
| 21 | 18 | simpri 485 | . . . . . . 7 ⊢ ((deg1‘(ℂfld ↾s ℚ))‘((3(.g‘(mulGrp‘(Poly1‘(ℂfld ↾s ℚ))))(var1‘(ℂfld ↾s ℚ)))(-g‘(Poly1‘(ℂfld ↾s ℚ)))((algSc‘(Poly1‘(ℂfld ↾s ℚ)))‘2))) = 3 |
| 22 | 20, 21 | eqtr3i 2758 | . . . . . 6 ⊢ ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) = 3 |
| 23 | 3nn0 12409 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
| 24 | 22, 23 | eqeltri 2829 | . . . . 5 ⊢ ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) ∈ ℕ0 |
| 25 | 24 | a1i 11 | . . . 4 ⊢ (⊤ → ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) ∈ ℕ0) |
| 26 | 22 | a1i 11 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) = 3) |
| 27 | 3z 12515 | . . . . . . . . . . 11 ⊢ 3 ∈ ℤ | |
| 28 | iddvds 16190 | . . . . . . . . . . 11 ⊢ (3 ∈ ℤ → 3 ∥ 3) | |
| 29 | 27, 28 | ax-mp 5 | . . . . . . . . . 10 ⊢ 3 ∥ 3 |
| 30 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = (2↑𝑛)) | |
| 31 | 29, 30 | breqtrid 5132 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 ∥ (2↑𝑛)) |
| 32 | 3prm 16615 | . . . . . . . . . . 11 ⊢ 3 ∈ ℙ | |
| 33 | 2prm 16613 | . . . . . . . . . . 11 ⊢ 2 ∈ ℙ | |
| 34 | prmdvdsexpr 16638 | . . . . . . . . . . 11 ⊢ ((3 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (3 ∥ (2↑𝑛) → 3 = 2)) | |
| 35 | 32, 33, 34 | mp3an12 1453 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ0 → (3 ∥ (2↑𝑛) → 3 = 2)) |
| 36 | 35 | imp 406 | . . . . . . . . 9 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 ∥ (2↑𝑛)) → 3 = 2) |
| 37 | 31, 36 | syldan 591 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → 3 = 2) |
| 38 | 2re 12209 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
| 39 | 2lt3 12302 | . . . . . . . . . . 11 ⊢ 2 < 3 | |
| 40 | 38, 39 | gtneii 11235 | . . . . . . . . . 10 ⊢ 3 ≠ 2 |
| 41 | 40 | neii 2932 | . . . . . . . . 9 ⊢ ¬ 3 = 2 |
| 42 | 41 | a1i 11 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ0 ∧ 3 = (2↑𝑛)) → ¬ 3 = 2) |
| 43 | 37, 42 | pm2.65da 816 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ0 → ¬ 3 = (2↑𝑛)) |
| 44 | 43 | neqned 2937 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → 3 ≠ (2↑𝑛)) |
| 45 | 26, 44 | eqnetrd 2997 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) ≠ (2↑𝑛)) |
| 46 | 45 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑛 ∈ ℕ0) → ((deg1‘(ℂfld ↾s ℚ))‘((ℂfld minPoly ℚ)‘(2↑𝑐(1 / 3)))) ≠ (2↑𝑛)) |
| 47 | 1, 2, 8, 9, 25, 46 | constrcon 33798 | . . 3 ⊢ (⊤ → ¬ (2↑𝑐(1 / 3)) ∈ Constr) |
| 48 | 47 | mptru 1548 | . 2 ⊢ ¬ (2↑𝑐(1 / 3)) ∈ Constr |
| 49 | 48 | nelir 3037 | 1 ⊢ (2↑𝑐(1 / 3)) ∉ Constr |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 ≠ wne 2930 ∉ wnel 3034 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℂcc 11014 1c1 11017 / cdiv 11784 2c2 12190 3c3 12191 ℕ0cn0 12391 ℤcz 12478 ℚcq 12856 ↑cexp 13978 ∥ cdvds 16173 ℙcprime 16592 ↾s cress 17151 -gcsg 18858 .gcmg 18990 mulGrpcmgp 20068 ℂfldccnfld 21301 algSccascl 21799 var1cv1 22098 Poly1cpl1 22099 deg1cdg1 25996 ↑𝑐ccxp 26501 minPoly cminply 33723 Constrcconstr 33753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-reg 9488 ax-inf2 9541 ax-ac2 10364 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 ax-mulf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-rpss 7665 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-ec 8633 df-qs 8637 df-map 8761 df-pm 8762 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-fi 9305 df-sup 9336 df-inf 9337 df-oi 9406 df-r1 9667 df-rank 9668 df-dju 9804 df-card 9842 df-acn 9845 df-ac 10017 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-xnn0 12465 df-z 12479 df-dec 12599 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-ioo 13259 df-ioc 13260 df-ico 13261 df-icc 13262 df-fz 13418 df-fzo 13565 df-fl 13706 df-mod 13784 df-seq 13919 df-exp 13979 df-fac 14191 df-bc 14220 df-hash 14248 df-word 14431 df-lsw 14480 df-concat 14488 df-s1 14514 df-substr 14559 df-pfx 14589 df-shft 14984 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-limsup 15388 df-clim 15405 df-rlim 15406 df-sum 15604 df-ef 15984 df-sin 15986 df-cos 15987 df-pi 15989 df-dvds 16174 df-gcd 16416 df-prm 16593 df-numer 16656 df-denom 16657 df-pc 16759 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ocomp 17192 df-ds 17193 df-unif 17194 df-hom 17195 df-cco 17196 df-rest 17336 df-topn 17337 df-0g 17355 df-gsum 17356 df-topgen 17357 df-pt 17358 df-prds 17361 df-pws 17363 df-xrs 17416 df-qtop 17421 df-imas 17422 df-qus 17423 df-xps 17424 df-mre 17498 df-mrc 17499 df-mri 17500 df-acs 17501 df-proset 18210 df-drs 18211 df-poset 18229 df-ipo 18444 df-chn 18522 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-nsg 19047 df-eqg 19048 df-ghm 19135 df-gim 19181 df-cntz 19239 df-oppg 19268 df-lsm 19558 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-srg 20115 df-ring 20163 df-cring 20164 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-irred 20287 df-invr 20316 df-dvr 20329 df-rhm 20400 df-nzr 20438 df-subrng 20471 df-subrg 20495 df-rlreg 20619 df-domn 20620 df-idom 20621 df-drng 20656 df-field 20657 df-sdrg 20712 df-lmod 20805 df-lss 20875 df-lsp 20915 df-lmhm 20966 df-lmim 20967 df-lmic 20968 df-lbs 21019 df-lvec 21047 df-sra 21117 df-rgmod 21118 df-lidl 21155 df-rsp 21156 df-2idl 21197 df-lpidl 21269 df-lpir 21270 df-pid 21284 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-fbas 21298 df-fg 21299 df-cnfld 21302 df-dsmm 21679 df-frlm 21694 df-uvc 21730 df-lindf 21753 df-linds 21754 df-assa 21800 df-asp 21801 df-ascl 21802 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-evls 22019 df-evl 22020 df-psr1 22102 df-vr1 22103 df-ply1 22104 df-coe1 22105 df-evls1 22240 df-evl1 22241 df-top 22819 df-topon 22836 df-topsp 22858 df-bases 22871 df-cld 22944 df-ntr 22945 df-cls 22946 df-nei 23023 df-lp 23061 df-perf 23062 df-cn 23152 df-cnp 23153 df-haus 23240 df-tx 23487 df-hmeo 23680 df-fil 23771 df-fm 23863 df-flim 23864 df-flf 23865 df-xms 24245 df-ms 24246 df-tms 24247 df-cncf 24808 df-limc 25804 df-dv 25805 df-mdeg 25997 df-deg1 25998 df-mon1 26073 df-uc1p 26074 df-q1p 26075 df-r1p 26076 df-ig1p 26077 df-log 26502 df-cxp 26503 df-fldgen 33288 df-mxidl 33436 df-dim 33623 df-fldext 33665 df-extdg 33666 df-irng 33708 df-minply 33724 df-constr 33754 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |