![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > axpjcl | Structured version Visualization version GIF version |
Description: Closure of a projection in its subspace. If we consider this together with axpjpj 31178 to be axioms, the need for the ax-hcompl 30960 can often be avoided for the kinds of theorems we are interested in here. An interesting project is to see how far we can go by using them in place of it. In particular, we can prove the orthomodular law pjomli 31193.) (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpjcl | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ ((projℎ‘𝐻)‘𝐴) = ((projℎ‘𝐻)‘𝐴) | |
2 | pjeq 31157 | . . 3 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) = ((projℎ‘𝐻)‘𝐴) ↔ (((projℎ‘𝐻)‘𝐴) ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ 𝑥)))) | |
3 | 1, 2 | mpbii 232 | . 2 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ 𝑥))) |
4 | 3 | simpld 494 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 ‘cfv 6536 (class class class)co 7404 ℋchba 30677 +ℎ cva 30678 Cℋ cch 30687 ⊥cort 30688 projℎcpjh 30695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cc 10429 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 ax-hilex 30757 ax-hfvadd 30758 ax-hvcom 30759 ax-hvass 30760 ax-hv0cl 30761 ax-hvaddid 30762 ax-hfvmul 30763 ax-hvmulid 30764 ax-hvmulass 30765 ax-hvdistr1 30766 ax-hvdistr2 30767 ax-hvmul0 30768 ax-hfi 30837 ax-his1 30840 ax-his2 30841 ax-his3 30842 ax-his4 30843 ax-hcompl 30960 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-oadd 8468 df-omul 8469 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-acn 9936 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-n0 12474 df-z 12560 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ico 13333 df-icc 13334 df-fz 13488 df-fl 13760 df-seq 13970 df-exp 14031 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-rest 17375 df-topgen 17396 df-psmet 21228 df-xmet 21229 df-met 21230 df-bl 21231 df-mopn 21232 df-fbas 21233 df-fg 21234 df-top 22747 df-topon 22764 df-bases 22800 df-cld 22874 df-ntr 22875 df-cls 22876 df-nei 22953 df-lm 23084 df-haus 23170 df-fil 23701 df-fm 23793 df-flim 23794 df-flf 23795 df-cfil 25134 df-cau 25135 df-cmet 25136 df-grpo 30251 df-gid 30252 df-ginv 30253 df-gdiv 30254 df-ablo 30303 df-vc 30317 df-nv 30350 df-va 30353 df-ba 30354 df-sm 30355 df-0v 30356 df-vs 30357 df-nmcv 30358 df-ims 30359 df-ssp 30480 df-ph 30571 df-cbn 30621 df-hnorm 30726 df-hba 30727 df-hvsub 30729 df-hlim 30730 df-hcau 30731 df-sh 30965 df-ch 30979 df-oc 31010 df-ch0 31011 df-shs 31066 df-pjh 31153 |
This theorem is referenced by: pjhcl 31159 pjcli 31175 pjpjhth 31183 pjoccl 31191 pjspansn 31335 pjorthi 31427 pjcompi 31430 |
Copyright terms: Public domain | W3C validator |