![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > axpjcl | Structured version Visualization version GIF version |
Description: Closure of a projection in its subspace. If we consider this together with axpjpj 31348 to be axioms, the need for the ax-hcompl 31130 can often be avoided for the kinds of theorems we are interested in here. An interesting project is to see how far we can go by using them in place of it. In particular, we can prove the orthomodular law pjomli 31363.) (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axpjcl | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ ((projℎ‘𝐻)‘𝐴) = ((projℎ‘𝐻)‘𝐴) | |
2 | pjeq 31327 | . . 3 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) = ((projℎ‘𝐻)‘𝐴) ↔ (((projℎ‘𝐻)‘𝐴) ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ 𝑥)))) | |
3 | 1, 2 | mpbii 232 | . 2 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → (((projℎ‘𝐻)‘𝐴) ∈ 𝐻 ∧ ∃𝑥 ∈ (⊥‘𝐻)𝐴 = (((projℎ‘𝐻)‘𝐴) +ℎ 𝑥))) |
4 | 3 | simpld 493 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 ‘cfv 6544 (class class class)co 7414 ℋchba 30847 +ℎ cva 30848 Cℋ cch 30857 ⊥cort 30858 projℎcpjh 30865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-inf2 9675 ax-cc 10467 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-pre-sup 11225 ax-addf 11226 ax-mulf 11227 ax-hilex 30927 ax-hfvadd 30928 ax-hvcom 30929 ax-hvass 30930 ax-hv0cl 30931 ax-hvaddid 30932 ax-hfvmul 30933 ax-hvmulid 30934 ax-hvmulass 30935 ax-hvdistr1 30936 ax-hvdistr2 30937 ax-hvmul0 30938 ax-hfi 31007 ax-his1 31010 ax-his2 31011 ax-his3 31012 ax-his4 31013 ax-hcompl 31130 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-iin 4997 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-oadd 8490 df-omul 8491 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9445 df-sup 9476 df-inf 9477 df-oi 9544 df-card 9973 df-acn 9976 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-div 11911 df-nn 12257 df-2 12319 df-3 12320 df-4 12321 df-n0 12517 df-z 12603 df-uz 12867 df-q 12977 df-rp 13021 df-xneg 13138 df-xadd 13139 df-xmul 13140 df-ico 13376 df-icc 13377 df-fz 13531 df-fl 13804 df-seq 14014 df-exp 14074 df-cj 15097 df-re 15098 df-im 15099 df-sqrt 15233 df-abs 15234 df-clim 15483 df-rlim 15484 df-rest 17430 df-topgen 17451 df-psmet 21329 df-xmet 21330 df-met 21331 df-bl 21332 df-mopn 21333 df-fbas 21334 df-fg 21335 df-top 22882 df-topon 22899 df-bases 22935 df-cld 23009 df-ntr 23010 df-cls 23011 df-nei 23088 df-lm 23219 df-haus 23305 df-fil 23836 df-fm 23928 df-flim 23929 df-flf 23930 df-cfil 25269 df-cau 25270 df-cmet 25271 df-grpo 30421 df-gid 30422 df-ginv 30423 df-gdiv 30424 df-ablo 30473 df-vc 30487 df-nv 30520 df-va 30523 df-ba 30524 df-sm 30525 df-0v 30526 df-vs 30527 df-nmcv 30528 df-ims 30529 df-ssp 30650 df-ph 30741 df-cbn 30791 df-hnorm 30896 df-hba 30897 df-hvsub 30899 df-hlim 30900 df-hcau 30901 df-sh 31135 df-ch 31149 df-oc 31180 df-ch0 31181 df-shs 31236 df-pjh 31323 |
This theorem is referenced by: pjhcl 31329 pjcli 31345 pjpjhth 31353 pjoccl 31361 pjspansn 31505 pjorthi 31597 pjcompi 31600 |
Copyright terms: Public domain | W3C validator |