HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjcli Structured version   Visualization version   GIF version

Theorem pjcli 31459
Description: Closure of a projection in its subspace. (Contributed by NM, 7-Oct-2000.) (New usage is discouraged.)
Hypothesis
Ref Expression
pjcl.1 𝐻C
Assertion
Ref Expression
pjcli (𝐴 ∈ ℋ → ((proj𝐻)‘𝐴) ∈ 𝐻)

Proof of Theorem pjcli
StepHypRef Expression
1 pjcl.1 . 2 𝐻C
2 axpjcl 31442 . 2 ((𝐻C𝐴 ∈ ℋ) → ((proj𝐻)‘𝐴) ∈ 𝐻)
31, 2mpan 690 1 (𝐴 ∈ ℋ → ((proj𝐻)‘𝐴) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cfv 6566  chba 30961   C cch 30971  projcpjh 30979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-inf2 9685  ax-cc 10479  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237  ax-addf 11238  ax-mulf 11239  ax-hilex 31041  ax-hfvadd 31042  ax-hvcom 31043  ax-hvass 31044  ax-hv0cl 31045  ax-hvaddid 31046  ax-hfvmul 31047  ax-hvmulid 31048  ax-hvmulass 31049  ax-hvdistr1 31050  ax-hvdistr2 31051  ax-hvmul0 31052  ax-hfi 31121  ax-his1 31124  ax-his2 31125  ax-his3 31126  ax-his4 31127  ax-hcompl 31244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-se 5643  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-isom 6575  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-2o 8512  df-oadd 8515  df-omul 8516  df-er 8750  df-map 8873  df-pm 8874  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-fi 9455  df-sup 9486  df-inf 9487  df-oi 9554  df-card 9983  df-acn 9986  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-n0 12531  df-z 12618  df-uz 12883  df-q 12995  df-rp 13039  df-xneg 13158  df-xadd 13159  df-xmul 13160  df-ico 13396  df-icc 13397  df-fz 13551  df-fl 13835  df-seq 14046  df-exp 14106  df-cj 15141  df-re 15142  df-im 15143  df-sqrt 15277  df-abs 15278  df-clim 15527  df-rlim 15528  df-rest 17475  df-topgen 17496  df-psmet 21380  df-xmet 21381  df-met 21382  df-bl 21383  df-mopn 21384  df-fbas 21385  df-fg 21386  df-top 22922  df-topon 22939  df-bases 22975  df-cld 23049  df-ntr 23050  df-cls 23051  df-nei 23128  df-lm 23259  df-haus 23345  df-fil 23876  df-fm 23968  df-flim 23969  df-flf 23970  df-cfil 25311  df-cau 25312  df-cmet 25313  df-grpo 30535  df-gid 30536  df-ginv 30537  df-gdiv 30538  df-ablo 30587  df-vc 30601  df-nv 30634  df-va 30637  df-ba 30638  df-sm 30639  df-0v 30640  df-vs 30641  df-nmcv 30642  df-ims 30643  df-ssp 30764  df-ph 30855  df-cbn 30905  df-hnorm 31010  df-hba 31011  df-hvsub 31013  df-hlim 31014  df-hcau 31015  df-sh 31249  df-ch 31263  df-oc 31294  df-ch0 31295  df-shs 31350  df-pjh 31437
This theorem is referenced by:  pjclii  31463  pjo  31713  pjocini  31740  pjjsi  31742  pjrni  31744  mayete3i  31770  pjcocli  32201  pjss1coi  32205  pjorthcoi  32211  pjcohocli  32245  pj2cocli  32247
  Copyright terms: Public domain W3C validator