| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjcli | Structured version Visualization version GIF version | ||
| Description: Closure of a projection in its subspace. (Contributed by NM, 7-Oct-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjcl.1 | ⊢ 𝐻 ∈ Cℋ |
| Ref | Expression |
|---|---|
| pjcli | ⊢ (𝐴 ∈ ℋ → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjcl.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
| 2 | axpjcl 31336 | . 2 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ∈ ℋ → ((projℎ‘𝐻)‘𝐴) ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6519 ℋchba 30855 Cℋ cch 30865 projℎcpjh 30873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cc 10406 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 ax-addf 11165 ax-mulf 11166 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvdistr1 30944 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 ax-his4 31021 ax-hcompl 31138 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-oadd 8447 df-omul 8448 df-er 8682 df-map 8805 df-pm 8806 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fi 9380 df-sup 9411 df-inf 9412 df-oi 9481 df-card 9910 df-acn 9913 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-n0 12459 df-z 12546 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-ico 13325 df-icc 13326 df-fz 13482 df-fl 13766 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-clim 15461 df-rlim 15462 df-rest 17391 df-topgen 17412 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-top 22787 df-topon 22804 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lm 23122 df-haus 23208 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-cfil 25162 df-cau 25163 df-cmet 25164 df-grpo 30429 df-gid 30430 df-ginv 30431 df-gdiv 30432 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-vs 30535 df-nmcv 30536 df-ims 30537 df-ssp 30658 df-ph 30749 df-cbn 30799 df-hnorm 30904 df-hba 30905 df-hvsub 30907 df-hlim 30908 df-hcau 30909 df-sh 31143 df-ch 31157 df-oc 31188 df-ch0 31189 df-shs 31244 df-pjh 31331 |
| This theorem is referenced by: pjclii 31357 pjo 31607 pjocini 31634 pjjsi 31636 pjrni 31638 mayete3i 31664 pjcocli 32095 pjss1coi 32099 pjorthcoi 32105 pjcohocli 32139 pj2cocli 32141 |
| Copyright terms: Public domain | W3C validator |