Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > pjhcli | Structured version Visualization version GIF version |
Description: Closure of a projection in Hilbert space. (Contributed by NM, 7-Oct-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjcl.1 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
pjhcli | ⊢ (𝐴 ∈ ℋ → ((projℎ‘𝐻)‘𝐴) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjcl.1 | . 2 ⊢ 𝐻 ∈ Cℋ | |
2 | pjhcl 29506 | . 2 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ((projℎ‘𝐻)‘𝐴) ∈ ℋ) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ∈ ℋ → ((projℎ‘𝐻)‘𝐴) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6397 ℋchba 29024 Cℋ cch 29034 projℎcpjh 29042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-inf2 9280 ax-cc 10073 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 ax-pre-sup 10831 ax-addf 10832 ax-mulf 10833 ax-hilex 29104 ax-hfvadd 29105 ax-hvcom 29106 ax-hvass 29107 ax-hv0cl 29108 ax-hvaddid 29109 ax-hfvmul 29110 ax-hvmulid 29111 ax-hvmulass 29112 ax-hvdistr1 29113 ax-hvdistr2 29114 ax-hvmul0 29115 ax-hfi 29184 ax-his1 29187 ax-his2 29188 ax-his3 29189 ax-his4 29190 ax-hcompl 29307 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-iin 4921 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-se 5524 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-isom 6406 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-1st 7779 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-1o 8222 df-oadd 8226 df-omul 8227 df-er 8411 df-map 8530 df-pm 8531 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-fi 9051 df-sup 9082 df-inf 9083 df-oi 9150 df-card 9579 df-acn 9582 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-div 11514 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-n0 12115 df-z 12201 df-uz 12463 df-q 12569 df-rp 12611 df-xneg 12728 df-xadd 12729 df-xmul 12730 df-ico 12965 df-icc 12966 df-fz 13120 df-fl 13391 df-seq 13599 df-exp 13660 df-cj 14686 df-re 14687 df-im 14688 df-sqrt 14822 df-abs 14823 df-clim 15073 df-rlim 15074 df-rest 16951 df-topgen 16972 df-psmet 20379 df-xmet 20380 df-met 20381 df-bl 20382 df-mopn 20383 df-fbas 20384 df-fg 20385 df-top 21815 df-topon 21832 df-bases 21867 df-cld 21940 df-ntr 21941 df-cls 21942 df-nei 22019 df-lm 22150 df-haus 22236 df-fil 22767 df-fm 22859 df-flim 22860 df-flf 22861 df-cfil 24176 df-cau 24177 df-cmet 24178 df-grpo 28598 df-gid 28599 df-ginv 28600 df-gdiv 28601 df-ablo 28650 df-vc 28664 df-nv 28697 df-va 28700 df-ba 28701 df-sm 28702 df-0v 28703 df-vs 28704 df-nmcv 28705 df-ims 28706 df-ssp 28827 df-ph 28918 df-cbn 28968 df-hnorm 29073 df-hba 29074 df-hvsub 29076 df-hlim 29077 df-hcau 29078 df-sh 29312 df-ch 29326 df-oc 29357 df-ch0 29358 df-shs 29413 df-pjh 29500 |
This theorem is referenced by: pjhclii 29527 pjige0i 29795 mayete3i 29833 ho0val 29855 pjnmopi 30253 pjcocli 30264 pjadjcoi 30266 pjss2coi 30269 pjnormssi 30273 pjorthcoi 30274 pjssposi 30277 pjadj2coi 30309 pj2cocli 30310 pjs14i 30315 strlem5 30360 jplem1 30373 |
Copyright terms: Public domain | W3C validator |