Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks5lem4a Structured version   Visualization version   GIF version

Theorem aks5lem4a 42149
Description: Lemma for AKS section 5, reduce hypotheses. (Contributed by metakunt, 17-Jun-2025.)
Hypotheses
Ref Expression
aks5lema.1 (𝜑𝐾 ∈ Field)
aks5lema.2 𝑃 = (chr‘𝐾)
aks5lema.3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
aks5lema.9 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))
aks5lema.10 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})
aks5lema.11 (𝜑𝑅 ∈ ℕ)
aks5lema.14 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks5lema.15 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
aks5lem4a.7 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks5lem4a.12 (𝜑𝐴 ∈ ℤ)
aks5lem4a.13 (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿))
Assertion
Ref Expression
aks5lem4a (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀)))
Distinct variable groups:   𝐵,𝑒   𝑒,𝐾   𝑒,𝑀   𝑒,𝑁
Allowed substitution hints:   𝜑(𝑦,𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑦,𝑓)   𝑃(𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑅(𝑦,𝑒,𝑓)   𝑆(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑓)   𝐿(𝑦,𝑒,𝑓)   𝑀(𝑦,𝑓)   𝑁(𝑦,𝑓)

Proof of Theorem aks5lem4a
Dummy variables 𝑐 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks5lema.1 . 2 (𝜑𝐾 ∈ Field)
2 aks5lema.2 . 2 𝑃 = (chr‘𝐾)
3 aks5lema.3 . 2 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
4 aks5lema.9 . 2 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))
5 aks5lema.10 . 2 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})
6 aks5lema.11 . 2 (𝜑𝑅 ∈ ℕ)
7 aks5lema.14 . 2 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
8 aks5lema.15 . 2 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
9 eqid 2735 . 2 (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏)) = (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))
10 eqid 2735 . 2 (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) = (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎))
11 eqid 2735 . 2 (𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) = (𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀))
12 aks5lem4a.7 . 2 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
13 nfcv 2898 . . 3 𝑑 (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒)
14 nfcv 2898 . . 3 𝑒 (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑)
15 imaeq2 6043 . . . 4 (𝑒 = 𝑑 → (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒) = (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑))
1615unieqd 4896 . . 3 (𝑒 = 𝑑 (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒) = (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑))
1713, 14, 16cbvmpt 5223 . 2 (𝑒 ∈ (Base‘𝐵) ↦ (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒)) = (𝑑 ∈ (Base‘𝐵) ↦ (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑))
18 aks5lem4a.12 . 2 (𝜑𝐴 ∈ ℤ)
19 aks5lem4a.13 . 2 (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19aks5lem3a 42148 1 (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {csn 4601   cuni 4883   class class class wbr 5119  {copab 5181  cmpt 5201  cima 5657  ccom 5658  cfv 6530  (class class class)co 7403  [cec 8715  cn 12238  cz 12586  cdvds 16270  cprime 16688  Basecbs 17226  +gcplusg 17269   /s cqus 17517  -gcsg 18916  .gcmg 19048   ~QG cqg 19103  mulGrpcmgp 20098  1rcur 20139  Fieldcfield 20688  RSpancrsp 21166  ℤRHomczrh 21458  chrcchr 21460  ℤ/nczn 21461  algSccascl 21810  var1cv1 22109  Poly1cpl1 22110  eval1ce1 22250   PrimRoots cprimroots 42050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206  ax-mulf 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-ec 8719  df-qs 8723  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-dvds 16271  df-prm 16689  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-imas 17520  df-qus 17521  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-nsg 19105  df-eqg 19106  df-ghm 19194  df-cntz 19298  df-od 19507  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-rhm 20430  df-subrng 20504  df-subrg 20528  df-field 20690  df-lmod 20817  df-lss 20887  df-lsp 20927  df-sra 21129  df-rgmod 21130  df-lidl 21167  df-rsp 21168  df-2idl 21209  df-cnfld 21314  df-zring 21406  df-zrh 21462  df-chr 21464  df-zn 21465  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-evl 22031  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-evls1 22251  df-evl1 22252  df-primroots 42051
This theorem is referenced by:  aks5lem5a  42150
  Copyright terms: Public domain W3C validator