![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5lem4a | Structured version Visualization version GIF version |
Description: Lemma for AKS section 5, reduce hypotheses. (Contributed by metakunt, 17-Jun-2025.) |
Ref | Expression |
---|---|
aks5lema.1 | ⊢ (𝜑 → 𝐾 ∈ Field) |
aks5lema.2 | ⊢ 𝑃 = (chr‘𝐾) |
aks5lema.3 | ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) |
aks5lema.9 | ⊢ 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿)) |
aks5lema.10 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) |
aks5lema.11 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
aks5lema.14 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
aks5lema.15 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
aks5lem4a.7 | ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
aks5lem4a.12 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
aks5lem4a.13 | ⊢ (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿)) |
Ref | Expression |
---|---|
aks5lem4a | ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks5lema.1 | . 2 ⊢ (𝜑 → 𝐾 ∈ Field) | |
2 | aks5lema.2 | . 2 ⊢ 𝑃 = (chr‘𝐾) | |
3 | aks5lema.3 | . 2 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) | |
4 | aks5lema.9 | . 2 ⊢ 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿)) | |
5 | aks5lema.10 | . 2 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) | |
6 | aks5lema.11 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
7 | aks5lema.14 | . 2 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} | |
8 | aks5lema.15 | . 2 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
9 | eqid 2740 | . 2 ⊢ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏)) = (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏)) | |
10 | eqid 2740 | . 2 ⊢ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) = (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) | |
11 | eqid 2740 | . 2 ⊢ (𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) = (𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) | |
12 | aks5lem4a.7 | . 2 ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) | |
13 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑑∪ (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒) | |
14 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑒∪ (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑) | |
15 | imaeq2 6080 | . . . 4 ⊢ (𝑒 = 𝑑 → (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒) = (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑)) | |
16 | 15 | unieqd 4944 | . . 3 ⊢ (𝑒 = 𝑑 → ∪ (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒) = ∪ (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑)) |
17 | 13, 14, 16 | cbvmpt 5277 | . 2 ⊢ (𝑒 ∈ (Base‘𝐵) ↦ ∪ (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒)) = (𝑑 ∈ (Base‘𝐵) ↦ ∪ (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑)) |
18 | aks5lem4a.12 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
19 | aks5lem4a.13 | . 2 ⊢ (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿)) | |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19 | aks5lem3a 42139 | 1 ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {csn 4648 ∪ cuni 4931 class class class wbr 5166 {copab 5228 ↦ cmpt 5249 “ cima 5698 ∘ ccom 5699 ‘cfv 6568 (class class class)co 7443 [cec 8755 ℕcn 12287 ℤcz 12633 ∥ cdvds 16296 ℙcprime 16712 Basecbs 17252 +gcplusg 17305 /s cqus 17559 -gcsg 18969 .gcmg 19101 ~QG cqg 19156 mulGrpcmgp 20155 1rcur 20202 Fieldcfield 20746 RSpancrsp 21234 ℤRHomczrh 21527 chrcchr 21529 ℤ/nℤczn 21530 algSccascl 21889 var1cv1 22190 Poly1cpl1 22191 eval1ce1 22331 PrimRoots cprimroots 42041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-pre-sup 11256 ax-addf 11257 ax-mulf 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-se 5651 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-of 7708 df-ofr 7709 df-om 7898 df-1st 8024 df-2nd 8025 df-supp 8196 df-tpos 8261 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-2o 8517 df-er 8757 df-ec 8759 df-qs 8763 df-map 8880 df-pm 8881 df-ixp 8950 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-fsupp 9426 df-sup 9505 df-inf 9506 df-oi 9573 df-card 10002 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-div 11942 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-9 12357 df-n0 12548 df-z 12634 df-dec 12753 df-uz 12898 df-rp 13052 df-fz 13562 df-fzo 13706 df-fl 13837 df-mod 13915 df-seq 14047 df-exp 14107 df-hash 14374 df-cj 15142 df-re 15143 df-im 15144 df-sqrt 15278 df-abs 15279 df-dvds 16297 df-prm 16713 df-struct 17188 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-mulr 17319 df-starv 17320 df-sca 17321 df-vsca 17322 df-ip 17323 df-tset 17324 df-ple 17325 df-ds 17327 df-unif 17328 df-hom 17329 df-cco 17330 df-0g 17495 df-gsum 17496 df-prds 17501 df-pws 17503 df-imas 17562 df-qus 17563 df-mre 17638 df-mrc 17639 df-acs 17641 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-mhm 18812 df-submnd 18813 df-grp 18970 df-minusg 18971 df-sbg 18972 df-mulg 19102 df-subg 19157 df-nsg 19158 df-eqg 19159 df-ghm 19247 df-cntz 19351 df-od 19564 df-cmn 19818 df-abl 19819 df-mgp 20156 df-rng 20174 df-ur 20203 df-srg 20208 df-ring 20256 df-cring 20257 df-oppr 20354 df-dvdsr 20377 df-rhm 20492 df-subrng 20566 df-subrg 20591 df-field 20748 df-lmod 20876 df-lss 20947 df-lsp 20987 df-sra 21189 df-rgmod 21190 df-lidl 21235 df-rsp 21236 df-2idl 21277 df-cnfld 21382 df-zring 21475 df-zrh 21531 df-chr 21533 df-zn 21534 df-assa 21890 df-asp 21891 df-ascl 21892 df-psr 21945 df-mvr 21946 df-mpl 21947 df-opsr 21949 df-evls 22114 df-evl 22115 df-psr1 22194 df-vr1 22195 df-ply1 22196 df-coe1 22197 df-evls1 22332 df-evl1 22333 df-primroots 42042 |
This theorem is referenced by: aks5lem5a 42141 |
Copyright terms: Public domain | W3C validator |