Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks5lem4a Structured version   Visualization version   GIF version

Theorem aks5lem4a 41902
Description: Lemma for AKS section 5, reduce hypotheses. (Contributed by metakunt, 17-Jun-2025.)
Hypotheses
Ref Expression
aks5lema.1 (𝜑𝐾 ∈ Field)
aks5lema.2 𝑃 = (chr‘𝐾)
aks5lema.3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
aks5lema.9 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))
aks5lema.10 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})
aks5lema.11 (𝜑𝑅 ∈ ℕ)
aks5lema.14 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks5lema.15 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
aks5lem4a.7 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks5lem4a.12 (𝜑𝐴 ∈ ℤ)
aks5lem4a.13 (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿))
Assertion
Ref Expression
aks5lem4a (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀)))
Distinct variable groups:   𝐵,𝑒   𝑒,𝐾   𝑒,𝑀   𝑒,𝑁
Allowed substitution hints:   𝜑(𝑦,𝑒,𝑓)   𝐴(𝑦,𝑒,𝑓)   𝐵(𝑦,𝑓)   𝑃(𝑦,𝑒,𝑓)   (𝑦,𝑒,𝑓)   𝑅(𝑦,𝑒,𝑓)   𝑆(𝑦,𝑒,𝑓)   𝐾(𝑦,𝑓)   𝐿(𝑦,𝑒,𝑓)   𝑀(𝑦,𝑓)   𝑁(𝑦,𝑓)

Proof of Theorem aks5lem4a
Dummy variables 𝑐 𝑑 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks5lema.1 . 2 (𝜑𝐾 ∈ Field)
2 aks5lema.2 . 2 𝑃 = (chr‘𝐾)
3 aks5lema.3 . 2 (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃𝑁))
4 aks5lema.9 . 2 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿))
5 aks5lema.10 . 2 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g𝑆)(1r𝑆))})
6 aks5lema.11 . 2 (𝜑𝑅 ∈ ℕ)
7 aks5lema.14 . 2 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
8 aks5lema.15 . 2 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁))
9 eqid 2726 . 2 (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏)) = (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))
10 eqid 2726 . 2 (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) = (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎))
11 eqid 2726 . 2 (𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) = (𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀))
12 aks5lem4a.7 . 2 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
13 nfcv 2892 . . 3 𝑑 (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒)
14 nfcv 2892 . . 3 𝑒 (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑)
15 imaeq2 6057 . . . 4 (𝑒 = 𝑑 → (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒) = (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑))
1615unieqd 4918 . . 3 (𝑒 = 𝑑 (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒) = (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑))
1713, 14, 16cbvmpt 5256 . 2 (𝑒 ∈ (Base‘𝐵) ↦ (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒)) = (𝑑 ∈ (Base‘𝐵) ↦ (((𝑐 ∈ (Base‘(Poly1𝐾)) ↦ (((eval1𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑))
18 aks5lem4a.12 . 2 (𝜑𝐴 ∈ ℤ)
19 aks5lem4a.13 . 2 (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19aks5lem3a 41901 1 (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1534  wcel 2099  wral 3051  {csn 4623   cuni 4905   class class class wbr 5145  {copab 5207  cmpt 5228  cima 5677  ccom 5678  cfv 6546  (class class class)co 7416  [cec 8724  cn 12258  cz 12604  cdvds 16251  cprime 16667  Basecbs 17208  +gcplusg 17261   /s cqus 17515  -gcsg 18925  .gcmg 19057   ~QG cqg 19112  mulGrpcmgp 20113  1rcur 20160  Fieldcfield 20704  RSpancrsp 21192  ℤRHomczrh 21485  chrcchr 21487  ℤ/nczn 21488  algSccascl 21846  var1cv1 22161  Poly1cpl1 22162  eval1ce1 22302   PrimRoots cprimroots 41803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227  ax-addf 11228  ax-mulf 11229
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-ofr 7683  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-ec 8728  df-qs 8732  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-sup 9478  df-inf 9479  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-rp 13023  df-fz 13533  df-fzo 13676  df-fl 13806  df-mod 13884  df-seq 14016  df-exp 14076  df-hash 14343  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-dvds 16252  df-prm 16668  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-hom 17285  df-cco 17286  df-0g 17451  df-gsum 17452  df-prds 17457  df-pws 17459  df-imas 17518  df-qus 17519  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-mhm 18768  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-mulg 19058  df-subg 19113  df-nsg 19114  df-eqg 19115  df-ghm 19203  df-cntz 19307  df-od 19522  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-srg 20166  df-ring 20214  df-cring 20215  df-oppr 20312  df-dvdsr 20335  df-rhm 20450  df-subrng 20524  df-subrg 20549  df-field 20706  df-lmod 20834  df-lss 20905  df-lsp 20945  df-sra 21147  df-rgmod 21148  df-lidl 21193  df-rsp 21194  df-2idl 21235  df-cnfld 21340  df-zring 21433  df-zrh 21489  df-chr 21491  df-zn 21492  df-assa 21847  df-asp 21848  df-ascl 21849  df-psr 21902  df-mvr 21903  df-mpl 21904  df-opsr 21906  df-evls 22083  df-evl 22084  df-psr1 22165  df-vr1 22166  df-ply1 22167  df-coe1 22168  df-evls1 22303  df-evl1 22304  df-primroots 41804
This theorem is referenced by:  aks5lem5a  41903
  Copyright terms: Public domain W3C validator