![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks5lem4a | Structured version Visualization version GIF version |
Description: Lemma for AKS section 5, reduce hypotheses. (Contributed by metakunt, 17-Jun-2025.) |
Ref | Expression |
---|---|
aks5lema.1 | ⊢ (𝜑 → 𝐾 ∈ Field) |
aks5lema.2 | ⊢ 𝑃 = (chr‘𝐾) |
aks5lema.3 | ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) |
aks5lema.9 | ⊢ 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿)) |
aks5lema.10 | ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) |
aks5lema.11 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
aks5lema.14 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
aks5lema.15 | ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) |
aks5lem4a.7 | ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) |
aks5lem4a.12 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
aks5lem4a.13 | ⊢ (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿)) |
Ref | Expression |
---|---|
aks5lem4a | ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks5lema.1 | . 2 ⊢ (𝜑 → 𝐾 ∈ Field) | |
2 | aks5lema.2 | . 2 ⊢ 𝑃 = (chr‘𝐾) | |
3 | aks5lema.3 | . 2 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ∧ 𝑃 ∥ 𝑁)) | |
4 | aks5lema.9 | . 2 ⊢ 𝐵 = (𝑆 /s (𝑆 ~QG 𝐿)) | |
5 | aks5lema.10 | . 2 ⊢ 𝐿 = ((RSpan‘𝑆)‘{((𝑅(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(-g‘𝑆)(1r‘𝑆))}) | |
6 | aks5lema.11 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
7 | aks5lema.14 | . 2 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} | |
8 | aks5lema.15 | . 2 ⊢ 𝑆 = (Poly1‘(ℤ/nℤ‘𝑁)) | |
9 | eqid 2734 | . 2 ⊢ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏)) = (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏)) | |
10 | eqid 2734 | . 2 ⊢ (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) = (𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) | |
11 | eqid 2734 | . 2 ⊢ (𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) = (𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) | |
12 | aks5lem4a.7 | . 2 ⊢ (𝜑 → 𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)) | |
13 | nfcv 2902 | . . 3 ⊢ Ⅎ𝑑∪ (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒) | |
14 | nfcv 2902 | . . 3 ⊢ Ⅎ𝑒∪ (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑) | |
15 | imaeq2 6075 | . . . 4 ⊢ (𝑒 = 𝑑 → (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒) = (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑)) | |
16 | 15 | unieqd 4924 | . . 3 ⊢ (𝑒 = 𝑑 → ∪ (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒) = ∪ (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑)) |
17 | 13, 14, 16 | cbvmpt 5258 | . 2 ⊢ (𝑒 ∈ (Base‘𝐵) ↦ ∪ (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑒)) = (𝑑 ∈ (Base‘𝐵) ↦ ∪ (((𝑐 ∈ (Base‘(Poly1‘𝐾)) ↦ (((eval1‘𝐾)‘𝑐)‘𝑀)) ∘ (𝑏 ∈ (Base‘(Poly1‘(ℤ/nℤ‘𝑁))) ↦ ((𝑎 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ ∪ ((ℤRHom‘𝐾) “ 𝑎)) ∘ 𝑏))) “ 𝑑)) |
18 | aks5lem4a.12 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
19 | aks5lem4a.13 | . 2 ⊢ (𝜑 → [(𝑁(.g‘(mulGrp‘𝑆))((var1‘(ℤ/nℤ‘𝑁))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴))))](𝑆 ~QG 𝐿) = [((𝑁(.g‘(mulGrp‘𝑆))(var1‘(ℤ/nℤ‘𝑁)))(+g‘𝑆)((algSc‘𝑆)‘((ℤRHom‘(ℤ/nℤ‘𝑁))‘𝐴)))](𝑆 ~QG 𝐿)) | |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19 | aks5lem3a 42170 | 1 ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘𝑀)) = (((eval1‘𝐾)‘((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝐴))))‘(𝑁(.g‘(mulGrp‘𝐾))𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 {csn 4630 ∪ cuni 4911 class class class wbr 5147 {copab 5209 ↦ cmpt 5230 “ cima 5691 ∘ ccom 5692 ‘cfv 6562 (class class class)co 7430 [cec 8741 ℕcn 12263 ℤcz 12610 ∥ cdvds 16286 ℙcprime 16704 Basecbs 17244 +gcplusg 17297 /s cqus 17551 -gcsg 18965 .gcmg 19097 ~QG cqg 19152 mulGrpcmgp 20151 1rcur 20198 Fieldcfield 20746 RSpancrsp 21234 ℤRHomczrh 21527 chrcchr 21529 ℤ/nℤczn 21530 algSccascl 21889 var1cv1 22192 Poly1cpl1 22193 eval1ce1 22333 PrimRoots cprimroots 42072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 ax-mulf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-ofr 7697 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-tpos 8249 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-ec 8745 df-qs 8749 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-rp 13032 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-dvds 16287 df-prm 16705 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-imas 17554 df-qus 17555 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-mhm 18808 df-submnd 18809 df-grp 18966 df-minusg 18967 df-sbg 18968 df-mulg 19098 df-subg 19153 df-nsg 19154 df-eqg 19155 df-ghm 19243 df-cntz 19347 df-od 19560 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-srg 20204 df-ring 20252 df-cring 20253 df-oppr 20350 df-dvdsr 20373 df-rhm 20488 df-subrng 20562 df-subrg 20586 df-field 20748 df-lmod 20876 df-lss 20947 df-lsp 20987 df-sra 21189 df-rgmod 21190 df-lidl 21235 df-rsp 21236 df-2idl 21277 df-cnfld 21382 df-zring 21475 df-zrh 21531 df-chr 21533 df-zn 21534 df-assa 21890 df-asp 21891 df-ascl 21892 df-psr 21946 df-mvr 21947 df-mpl 21948 df-opsr 21950 df-evls 22115 df-evl 22116 df-psr1 22196 df-vr1 22197 df-ply1 22198 df-coe1 22199 df-evls1 22334 df-evl1 22335 df-primroots 42073 |
This theorem is referenced by: aks5lem5a 42172 |
Copyright terms: Public domain | W3C validator |