| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrcon | Structured version Visualization version GIF version | ||
| Description: Contradiction of constructibility: If a complex number 𝐴 has minimal polynomial 𝐹 over ℚ of a degree that is not a power of 2, then 𝐴 is not constructible. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| constrcon.d | ⊢ 𝐷 = (deg1‘(ℂfld ↾s ℚ)) |
| constrcon.m | ⊢ 𝑀 = (ℂfld minPoly ℚ) |
| constrcon.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| constrcon.f | ⊢ (𝜑 → 𝐹 = (𝑀‘𝐴)) |
| constrcon.1 | ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
| constrcon.2 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐷‘𝐹) ≠ (2↑𝑛)) |
| Ref | Expression |
|---|---|
| constrcon | ⊢ (𝜑 → ¬ 𝐴 ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrcon.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐷‘𝐹) ≠ (2↑𝑛)) | |
| 2 | 1 | neneqd 2933 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ¬ (𝐷‘𝐹) = (2↑𝑛)) |
| 3 | eqid 2731 | . . . . . . . 8 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
| 4 | eqid 2731 | . . . . . . . 8 ⊢ (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) | |
| 5 | eqid 2731 | . . . . . . . 8 ⊢ (deg1‘ℂfld) = (deg1‘ℂfld) | |
| 6 | constrcon.m | . . . . . . . 8 ⊢ 𝑀 = (ℂfld minPoly ℚ) | |
| 7 | cnfldfld 33302 | . . . . . . . . 9 ⊢ ℂfld ∈ Field | |
| 8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℂfld ∈ Field) |
| 9 | cndrng 21333 | . . . . . . . . . 10 ⊢ ℂfld ∈ DivRing | |
| 10 | qsubdrg 21354 | . . . . . . . . . . 11 ⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | |
| 11 | 10 | simpli 483 | . . . . . . . . . 10 ⊢ ℚ ∈ (SubRing‘ℂfld) |
| 12 | 3 | qdrng 27556 | . . . . . . . . . 10 ⊢ (ℂfld ↾s ℚ) ∈ DivRing |
| 13 | issdrg 20701 | . . . . . . . . . 10 ⊢ (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing)) | |
| 14 | 9, 11, 12, 13 | mpbir3an 1342 | . . . . . . . . 9 ⊢ ℚ ∈ (SubDRing‘ℂfld) |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℚ ∈ (SubDRing‘ℂfld)) |
| 16 | cnfldbas 21293 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
| 17 | constrcon.d | . . . . . . . . 9 ⊢ 𝐷 = (deg1‘(ℂfld ↾s ℚ)) | |
| 18 | constrcon.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 19 | eqidd 2732 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐷 = 𝐷) | |
| 20 | constrcon.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 = (𝑀‘𝐴)) | |
| 21 | 19, 20 | fveq12d 6829 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐷‘𝐹) = (𝐷‘(𝑀‘𝐴))) |
| 22 | constrcon.1 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) | |
| 23 | 21, 22 | eqeltrrd 2832 | . . . . . . . . 9 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
| 24 | 16, 6, 17, 8, 15, 18, 23 | minplyelirng 33723 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (ℂfld IntgRing ℚ)) |
| 25 | 3, 4, 5, 6, 8, 15, 24 | algextdeg 33733 | . . . . . . 7 ⊢ (𝜑 → ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = ((deg1‘ℂfld)‘(𝑀‘𝐴))) |
| 26 | eqid 2731 | . . . . . . . 8 ⊢ (Poly1‘(ℂfld ↾s ℚ)) = (Poly1‘(ℂfld ↾s ℚ)) | |
| 27 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘(Poly1‘(ℂfld ↾s ℚ))) = (Base‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 28 | eqid 2731 | . . . . . . . . 9 ⊢ (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ) | |
| 29 | eqid 2731 | . . . . . . . . 9 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
| 30 | eqid 2731 | . . . . . . . . 9 ⊢ {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} = {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} | |
| 31 | eqid 2731 | . . . . . . . . 9 ⊢ (RSpan‘(Poly1‘(ℂfld ↾s ℚ))) = (RSpan‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 32 | eqid 2731 | . . . . . . . . 9 ⊢ (idlGen1p‘(ℂfld ↾s ℚ)) = (idlGen1p‘(ℂfld ↾s ℚ)) | |
| 33 | 28, 26, 16, 8, 15, 18, 29, 30, 31, 32, 6 | minplycl 33714 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘(ℂfld ↾s ℚ)))) |
| 34 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℚ ∈ (SubRing‘ℂfld)) |
| 35 | 3, 5, 26, 27, 33, 34 | ressdeg1 33524 | . . . . . . 7 ⊢ (𝜑 → ((deg1‘ℂfld)‘(𝑀‘𝐴)) = ((deg1‘(ℂfld ↾s ℚ))‘(𝑀‘𝐴))) |
| 36 | 17, 19 | eqtr3id 2780 | . . . . . . . 8 ⊢ (𝜑 → (deg1‘(ℂfld ↾s ℚ)) = 𝐷) |
| 37 | 20 | eqcomd 2737 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘𝐴) = 𝐹) |
| 38 | 36, 37 | fveq12d 6829 | . . . . . . 7 ⊢ (𝜑 → ((deg1‘(ℂfld ↾s ℚ))‘(𝑀‘𝐴)) = (𝐷‘𝐹)) |
| 39 | 25, 35, 38 | 3eqtrd 2770 | . . . . . 6 ⊢ (𝜑 → ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (𝐷‘𝐹)) |
| 40 | 39 | eqeq1d 2733 | . . . . 5 ⊢ (𝜑 → (((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛) ↔ (𝐷‘𝐹) = (2↑𝑛))) |
| 41 | 40 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛) ↔ (𝐷‘𝐹) = (2↑𝑛))) |
| 42 | 2, 41 | mtbird 325 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ¬ ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 43 | 42 | nrexdv 3127 | . 2 ⊢ (𝜑 → ¬ ∃𝑛 ∈ ℕ0 ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 44 | eqid 2731 | . . 3 ⊢ (ℂfld fldGen (ℚ ∪ {𝐴})) = (ℂfld fldGen (ℚ ∪ {𝐴})) | |
| 45 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ Constr) → 𝐴 ∈ Constr) | |
| 46 | 3, 4, 44, 45 | constrext2chn 33767 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ Constr) → ∃𝑛 ∈ ℕ0 ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 47 | 43, 46 | mtand 815 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 {crab 3395 ∪ cun 3900 {csn 4576 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 2c2 12177 ℕ0cn0 12378 ℚcq 12843 ↑cexp 13965 Basecbs 17117 ↾s cress 17138 0gc0g 17340 SubRingcsubrg 20482 DivRingcdr 20642 Fieldcfield 20643 SubDRingcsdrg 20699 RSpancrsp 21142 ℂfldccnfld 21289 Poly1cpl1 22087 evalSub1 ces1 22226 deg1cdg1 25984 idlGen1pcig1p 26060 fldGen cfldgen 33271 [:]cextdg 33648 minPoly cminply 33707 Constrcconstr 33737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-ac2 10351 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-rpss 7656 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-inf 9327 df-oi 9396 df-r1 9654 df-rank 9655 df-dju 9791 df-card 9829 df-acn 9832 df-ac 10004 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-xnn0 12452 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xmul 13010 df-ico 13248 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-hash 14235 df-word 14418 df-lsw 14467 df-concat 14475 df-s1 14501 df-substr 14546 df-pfx 14576 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-dvds 16161 df-gcd 16403 df-prm 16580 df-pc 16746 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ocomp 17179 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-0g 17342 df-gsum 17343 df-prds 17348 df-pws 17350 df-imas 17409 df-qus 17410 df-mre 17485 df-mrc 17486 df-mri 17487 df-acs 17488 df-proset 18197 df-drs 18198 df-poset 18216 df-ipo 18431 df-chn 18509 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-nsg 19034 df-eqg 19035 df-ghm 19123 df-gim 19169 df-cntz 19227 df-oppg 19256 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-irred 20275 df-invr 20304 df-dvr 20317 df-rhm 20388 df-nzr 20426 df-subrng 20459 df-subrg 20483 df-rlreg 20607 df-domn 20608 df-idom 20609 df-drng 20644 df-field 20645 df-sdrg 20700 df-lmod 20793 df-lss 20863 df-lsp 20903 df-lmhm 20954 df-lmim 20955 df-lmic 20956 df-lbs 21007 df-lvec 21035 df-sra 21105 df-rgmod 21106 df-lidl 21143 df-rsp 21144 df-2idl 21185 df-lpidl 21257 df-lpir 21258 df-pid 21272 df-cnfld 21290 df-dsmm 21667 df-frlm 21682 df-uvc 21718 df-lindf 21741 df-linds 21742 df-assa 21788 df-asp 21789 df-ascl 21790 df-psr 21844 df-mvr 21845 df-mpl 21846 df-opsr 21848 df-evls 22007 df-evl 22008 df-psr1 22090 df-vr1 22091 df-ply1 22092 df-coe1 22093 df-evls1 22228 df-evl1 22229 df-mdeg 25985 df-deg1 25986 df-mon1 26061 df-uc1p 26062 df-q1p 26063 df-r1p 26064 df-ig1p 26065 df-fldgen 33272 df-mxidl 33420 df-dim 33607 df-fldext 33649 df-extdg 33650 df-irng 33692 df-minply 33708 df-constr 33738 |
| This theorem is referenced by: 2sqr3nconstr 33789 cos9thpinconstrlem2 33798 |
| Copyright terms: Public domain | W3C validator |