| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrcon | Structured version Visualization version GIF version | ||
| Description: Contradiction of constructibility: If a complex number 𝐴 has minimal polynomial 𝐹 over ℚ of a degree that is not a power of 2, then 𝐴 is not constructible. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| constrcon.d | ⊢ 𝐷 = (deg1‘(ℂfld ↾s ℚ)) |
| constrcon.m | ⊢ 𝑀 = (ℂfld minPoly ℚ) |
| constrcon.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| constrcon.f | ⊢ (𝜑 → 𝐹 = (𝑀‘𝐴)) |
| constrcon.1 | ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
| constrcon.2 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐷‘𝐹) ≠ (2↑𝑛)) |
| Ref | Expression |
|---|---|
| constrcon | ⊢ (𝜑 → ¬ 𝐴 ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrcon.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐷‘𝐹) ≠ (2↑𝑛)) | |
| 2 | 1 | neneqd 2934 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ¬ (𝐷‘𝐹) = (2↑𝑛)) |
| 3 | eqid 2733 | . . . . . . . 8 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
| 4 | eqid 2733 | . . . . . . . 8 ⊢ (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) | |
| 5 | eqid 2733 | . . . . . . . 8 ⊢ (deg1‘ℂfld) = (deg1‘ℂfld) | |
| 6 | constrcon.m | . . . . . . . 8 ⊢ 𝑀 = (ℂfld minPoly ℚ) | |
| 7 | cnfldfld 33314 | . . . . . . . . 9 ⊢ ℂfld ∈ Field | |
| 8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℂfld ∈ Field) |
| 9 | cndrng 21337 | . . . . . . . . . 10 ⊢ ℂfld ∈ DivRing | |
| 10 | qsubdrg 21358 | . . . . . . . . . . 11 ⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | |
| 11 | 10 | simpli 483 | . . . . . . . . . 10 ⊢ ℚ ∈ (SubRing‘ℂfld) |
| 12 | 3 | qdrng 27559 | . . . . . . . . . 10 ⊢ (ℂfld ↾s ℚ) ∈ DivRing |
| 13 | issdrg 20705 | . . . . . . . . . 10 ⊢ (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing)) | |
| 14 | 9, 11, 12, 13 | mpbir3an 1342 | . . . . . . . . 9 ⊢ ℚ ∈ (SubDRing‘ℂfld) |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℚ ∈ (SubDRing‘ℂfld)) |
| 16 | cnfldbas 21297 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
| 17 | constrcon.d | . . . . . . . . 9 ⊢ 𝐷 = (deg1‘(ℂfld ↾s ℚ)) | |
| 18 | constrcon.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 19 | eqidd 2734 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐷 = 𝐷) | |
| 20 | constrcon.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 = (𝑀‘𝐴)) | |
| 21 | 19, 20 | fveq12d 6835 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐷‘𝐹) = (𝐷‘(𝑀‘𝐴))) |
| 22 | constrcon.1 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) | |
| 23 | 21, 22 | eqeltrrd 2834 | . . . . . . . . 9 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
| 24 | 16, 6, 17, 8, 15, 18, 23 | minplyelirng 33749 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (ℂfld IntgRing ℚ)) |
| 25 | 3, 4, 5, 6, 8, 15, 24 | algextdeg 33759 | . . . . . . 7 ⊢ (𝜑 → ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = ((deg1‘ℂfld)‘(𝑀‘𝐴))) |
| 26 | eqid 2733 | . . . . . . . 8 ⊢ (Poly1‘(ℂfld ↾s ℚ)) = (Poly1‘(ℂfld ↾s ℚ)) | |
| 27 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘(Poly1‘(ℂfld ↾s ℚ))) = (Base‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 28 | eqid 2733 | . . . . . . . . 9 ⊢ (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ) | |
| 29 | eqid 2733 | . . . . . . . . 9 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
| 30 | eqid 2733 | . . . . . . . . 9 ⊢ {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} = {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} | |
| 31 | eqid 2733 | . . . . . . . . 9 ⊢ (RSpan‘(Poly1‘(ℂfld ↾s ℚ))) = (RSpan‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 32 | eqid 2733 | . . . . . . . . 9 ⊢ (idlGen1p‘(ℂfld ↾s ℚ)) = (idlGen1p‘(ℂfld ↾s ℚ)) | |
| 33 | 28, 26, 16, 8, 15, 18, 29, 30, 31, 32, 6 | minplycl 33740 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘(ℂfld ↾s ℚ)))) |
| 34 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℚ ∈ (SubRing‘ℂfld)) |
| 35 | 3, 5, 26, 27, 33, 34 | ressdeg1 33536 | . . . . . . 7 ⊢ (𝜑 → ((deg1‘ℂfld)‘(𝑀‘𝐴)) = ((deg1‘(ℂfld ↾s ℚ))‘(𝑀‘𝐴))) |
| 36 | 17, 19 | eqtr3id 2782 | . . . . . . . 8 ⊢ (𝜑 → (deg1‘(ℂfld ↾s ℚ)) = 𝐷) |
| 37 | 20 | eqcomd 2739 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘𝐴) = 𝐹) |
| 38 | 36, 37 | fveq12d 6835 | . . . . . . 7 ⊢ (𝜑 → ((deg1‘(ℂfld ↾s ℚ))‘(𝑀‘𝐴)) = (𝐷‘𝐹)) |
| 39 | 25, 35, 38 | 3eqtrd 2772 | . . . . . 6 ⊢ (𝜑 → ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (𝐷‘𝐹)) |
| 40 | 39 | eqeq1d 2735 | . . . . 5 ⊢ (𝜑 → (((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛) ↔ (𝐷‘𝐹) = (2↑𝑛))) |
| 41 | 40 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛) ↔ (𝐷‘𝐹) = (2↑𝑛))) |
| 42 | 2, 41 | mtbird 325 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ¬ ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 43 | 42 | nrexdv 3128 | . 2 ⊢ (𝜑 → ¬ ∃𝑛 ∈ ℕ0 ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 44 | eqid 2733 | . . 3 ⊢ (ℂfld fldGen (ℚ ∪ {𝐴})) = (ℂfld fldGen (ℚ ∪ {𝐴})) | |
| 45 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ Constr) → 𝐴 ∈ Constr) | |
| 46 | 3, 4, 44, 45 | constrext2chn 33793 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ Constr) → ∃𝑛 ∈ ℕ0 ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 47 | 43, 46 | mtand 815 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 {crab 3396 ∪ cun 3896 {csn 4575 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 2c2 12187 ℕ0cn0 12388 ℚcq 12848 ↑cexp 13970 Basecbs 17122 ↾s cress 17143 0gc0g 17345 SubRingcsubrg 20486 DivRingcdr 20646 Fieldcfield 20647 SubDRingcsdrg 20703 RSpancrsp 21146 ℂfldccnfld 21293 Poly1cpl1 22090 evalSub1 ces1 22229 deg1cdg1 25987 idlGen1pcig1p 26063 fldGen cfldgen 33283 [:]cextdg 33674 minPoly cminply 33733 Constrcconstr 33763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-reg 9485 ax-inf2 9538 ax-ac2 10361 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-rpss 7662 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-ec 8630 df-qs 8634 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-inf 9334 df-oi 9403 df-r1 9664 df-rank 9665 df-dju 9801 df-card 9839 df-acn 9842 df-ac 10014 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xmul 13015 df-ico 13253 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-hash 14240 df-word 14423 df-lsw 14472 df-concat 14480 df-s1 14506 df-substr 14551 df-pfx 14581 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-gcd 16408 df-prm 16585 df-pc 16751 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ocomp 17184 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-imas 17414 df-qus 17415 df-mre 17490 df-mrc 17491 df-mri 17492 df-acs 17493 df-proset 18202 df-drs 18203 df-poset 18221 df-ipo 18436 df-chn 18514 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-nsg 19039 df-eqg 19040 df-ghm 19127 df-gim 19173 df-cntz 19231 df-oppg 19260 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-srg 20107 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-irred 20279 df-invr 20308 df-dvr 20321 df-rhm 20392 df-nzr 20430 df-subrng 20463 df-subrg 20487 df-rlreg 20611 df-domn 20612 df-idom 20613 df-drng 20648 df-field 20649 df-sdrg 20704 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lmhm 20958 df-lmim 20959 df-lmic 20960 df-lbs 21011 df-lvec 21039 df-sra 21109 df-rgmod 21110 df-lidl 21147 df-rsp 21148 df-2idl 21189 df-lpidl 21261 df-lpir 21262 df-pid 21276 df-cnfld 21294 df-dsmm 21671 df-frlm 21686 df-uvc 21722 df-lindf 21745 df-linds 21746 df-assa 21792 df-asp 21793 df-ascl 21794 df-psr 21848 df-mvr 21849 df-mpl 21850 df-opsr 21852 df-evls 22010 df-evl 22011 df-psr1 22093 df-vr1 22094 df-ply1 22095 df-coe1 22096 df-evls1 22231 df-evl1 22232 df-mdeg 25988 df-deg1 25989 df-mon1 26064 df-uc1p 26065 df-q1p 26066 df-r1p 26067 df-ig1p 26068 df-fldgen 33284 df-mxidl 33432 df-dim 33633 df-fldext 33675 df-extdg 33676 df-irng 33718 df-minply 33734 df-constr 33764 |
| This theorem is referenced by: 2sqr3nconstr 33815 cos9thpinconstrlem2 33824 |
| Copyright terms: Public domain | W3C validator |