Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrcon Structured version   Visualization version   GIF version

Theorem constrcon 33772
Description: Contradiction of constructibility: If a complex number 𝐴 has minimal polynomial 𝐹 over of a degree that is not a power of 2, then 𝐴 is not constructible. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
constrcon.d 𝐷 = (deg1‘(ℂflds ℚ))
constrcon.m 𝑀 = (ℂfld minPoly ℚ)
constrcon.a (𝜑𝐴 ∈ ℂ)
constrcon.f (𝜑𝐹 = (𝑀𝐴))
constrcon.1 (𝜑 → (𝐷𝐹) ∈ ℕ0)
constrcon.2 ((𝜑𝑛 ∈ ℕ0) → (𝐷𝐹) ≠ (2↑𝑛))
Assertion
Ref Expression
constrcon (𝜑 → ¬ 𝐴 ∈ Constr)
Distinct variable groups:   𝐴,𝑛   𝜑,𝑛
Allowed substitution hints:   𝐷(𝑛)   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem constrcon
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 constrcon.2 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝐷𝐹) ≠ (2↑𝑛))
21neneqd 2932 . . . 4 ((𝜑𝑛 ∈ ℕ0) → ¬ (𝐷𝐹) = (2↑𝑛))
3 eqid 2730 . . . . . . . 8 (ℂflds ℚ) = (ℂflds ℚ)
4 eqid 2730 . . . . . . . 8 (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
5 eqid 2730 . . . . . . . 8 (deg1‘ℂfld) = (deg1‘ℂfld)
6 constrcon.m . . . . . . . 8 𝑀 = (ℂfld minPoly ℚ)
7 cnfldfld 33322 . . . . . . . . 9 fld ∈ Field
87a1i 11 . . . . . . . 8 (𝜑 → ℂfld ∈ Field)
9 cndrng 21316 . . . . . . . . . 10 fld ∈ DivRing
10 qsubdrg 21342 . . . . . . . . . . 11 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1110simpli 483 . . . . . . . . . 10 ℚ ∈ (SubRing‘ℂfld)
123qdrng 27538 . . . . . . . . . 10 (ℂflds ℚ) ∈ DivRing
13 issdrg 20703 . . . . . . . . . 10 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
149, 11, 12, 13mpbir3an 1342 . . . . . . . . 9 ℚ ∈ (SubDRing‘ℂfld)
1514a1i 11 . . . . . . . 8 (𝜑 → ℚ ∈ (SubDRing‘ℂfld))
16 cnfldbas 21274 . . . . . . . . 9 ℂ = (Base‘ℂfld)
17 constrcon.d . . . . . . . . 9 𝐷 = (deg1‘(ℂflds ℚ))
18 constrcon.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
19 eqidd 2731 . . . . . . . . . . 11 (𝜑𝐷 = 𝐷)
20 constrcon.f . . . . . . . . . . 11 (𝜑𝐹 = (𝑀𝐴))
2119, 20fveq12d 6872 . . . . . . . . . 10 (𝜑 → (𝐷𝐹) = (𝐷‘(𝑀𝐴)))
22 constrcon.1 . . . . . . . . . 10 (𝜑 → (𝐷𝐹) ∈ ℕ0)
2321, 22eqeltrrd 2830 . . . . . . . . 9 (𝜑 → (𝐷‘(𝑀𝐴)) ∈ ℕ0)
2416, 6, 17, 8, 15, 18, 23minplyelirng 33713 . . . . . . . 8 (𝜑𝐴 ∈ (ℂfld IntgRing ℚ))
253, 4, 5, 6, 8, 15, 24algextdeg 33723 . . . . . . 7 (𝜑 → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = ((deg1‘ℂfld)‘(𝑀𝐴)))
26 eqid 2730 . . . . . . . 8 (Poly1‘(ℂflds ℚ)) = (Poly1‘(ℂflds ℚ))
27 eqid 2730 . . . . . . . 8 (Base‘(Poly1‘(ℂflds ℚ))) = (Base‘(Poly1‘(ℂflds ℚ)))
28 eqid 2730 . . . . . . . . 9 (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ)
29 eqid 2730 . . . . . . . . 9 (0g‘ℂfld) = (0g‘ℂfld)
30 eqid 2730 . . . . . . . . 9 {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} = {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)}
31 eqid 2730 . . . . . . . . 9 (RSpan‘(Poly1‘(ℂflds ℚ))) = (RSpan‘(Poly1‘(ℂflds ℚ)))
32 eqid 2730 . . . . . . . . 9 (idlGen1p‘(ℂflds ℚ)) = (idlGen1p‘(ℂflds ℚ))
3328, 26, 16, 8, 15, 18, 29, 30, 31, 32, 6minplycl 33704 . . . . . . . 8 (𝜑 → (𝑀𝐴) ∈ (Base‘(Poly1‘(ℂflds ℚ))))
3411a1i 11 . . . . . . . 8 (𝜑 → ℚ ∈ (SubRing‘ℂfld))
353, 5, 26, 27, 33, 34ressdeg1 33543 . . . . . . 7 (𝜑 → ((deg1‘ℂfld)‘(𝑀𝐴)) = ((deg1‘(ℂflds ℚ))‘(𝑀𝐴)))
3617, 19eqtr3id 2779 . . . . . . . 8 (𝜑 → (deg1‘(ℂflds ℚ)) = 𝐷)
3720eqcomd 2736 . . . . . . . 8 (𝜑 → (𝑀𝐴) = 𝐹)
3836, 37fveq12d 6872 . . . . . . 7 (𝜑 → ((deg1‘(ℂflds ℚ))‘(𝑀𝐴)) = (𝐷𝐹))
3925, 35, 383eqtrd 2769 . . . . . 6 (𝜑 → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (𝐷𝐹))
4039eqeq1d 2732 . . . . 5 (𝜑 → (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛) ↔ (𝐷𝐹) = (2↑𝑛)))
4140adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛) ↔ (𝐷𝐹) = (2↑𝑛)))
422, 41mtbird 325 . . 3 ((𝜑𝑛 ∈ ℕ0) → ¬ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛))
4342nrexdv 3130 . 2 (𝜑 → ¬ ∃𝑛 ∈ ℕ0 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛))
44 eqid 2730 . . 3 (ℂfld fldGen (ℚ ∪ {𝐴})) = (ℂfld fldGen (ℚ ∪ {𝐴}))
45 simpr 484 . . 3 ((𝜑𝐴 ∈ Constr) → 𝐴 ∈ Constr)
463, 4, 44, 45constrext2chn 33757 . 2 ((𝜑𝐴 ∈ Constr) → ∃𝑛 ∈ ℕ0 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛))
4743, 46mtand 815 1 (𝜑 → ¬ 𝐴 ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2927  wrex 3055  {crab 3411  cun 3920  {csn 4597  dom cdm 5646  cfv 6519  (class class class)co 7394  cc 11084  2c2 12252  0cn0 12458  cq 12921  cexp 14036  Basecbs 17185  s cress 17206  0gc0g 17408  SubRingcsubrg 20484  DivRingcdr 20644  Fieldcfield 20645  SubDRingcsdrg 20701  RSpancrsp 21123  fldccnfld 21270  Poly1cpl1 22067   evalSub1 ces1 22206  deg1cdg1 25966  idlGen1pcig1p 26042   fldGen cfldgen 33268  [:]cextdg 33644   minPoly cminply 33697  Constrcconstr 33727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-reg 9563  ax-inf2 9612  ax-ac2 10434  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164  ax-addf 11165  ax-mulf 11166
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-ofr 7661  df-rpss 7706  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-oadd 8447  df-er 8682  df-ec 8684  df-qs 8688  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9331  df-sup 9411  df-inf 9412  df-oi 9481  df-r1 9735  df-rank 9736  df-dju 9872  df-card 9910  df-acn 9913  df-ac 10087  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-xnn0 12532  df-z 12546  df-dec 12666  df-uz 12810  df-q 12922  df-rp 12966  df-xneg 13085  df-xmul 13087  df-ico 13325  df-fz 13482  df-fzo 13629  df-fl 13766  df-mod 13844  df-seq 13977  df-exp 14037  df-hash 14306  df-word 14489  df-lsw 14538  df-concat 14546  df-s1 14571  df-substr 14616  df-pfx 14646  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-dvds 16230  df-gcd 16471  df-prm 16648  df-pc 16814  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ocomp 17247  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-imas 17477  df-qus 17478  df-mre 17553  df-mrc 17554  df-mri 17555  df-acs 17556  df-proset 18261  df-drs 18262  df-poset 18280  df-ipo 18493  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-nsg 19062  df-eqg 19063  df-ghm 19151  df-gim 19197  df-cntz 19255  df-oppg 19284  df-lsm 19572  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-srg 20102  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-irred 20274  df-invr 20303  df-dvr 20316  df-rhm 20387  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-sdrg 20702  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lmhm 20935  df-lmim 20936  df-lmic 20937  df-lbs 20988  df-lvec 21016  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-2idl 21166  df-lpidl 21238  df-lpir 21239  df-pid 21253  df-cnfld 21271  df-dsmm 21647  df-frlm 21662  df-uvc 21698  df-lindf 21721  df-linds 21722  df-assa 21768  df-asp 21769  df-ascl 21770  df-psr 21824  df-mvr 21825  df-mpl 21826  df-opsr 21828  df-evls 21987  df-evl 21988  df-psr1 22070  df-vr1 22071  df-ply1 22072  df-coe1 22073  df-evls1 22208  df-evl1 22209  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-ig1p 26047  df-chn 32939  df-fldgen 33269  df-mxidl 33439  df-dim 33603  df-fldext 33645  df-extdg 33646  df-irng 33687  df-minply 33698  df-constr 33728
This theorem is referenced by:  2sqr3nconstr  33779  cos9thpinconstrlem2  33788
  Copyright terms: Public domain W3C validator