| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrcon | Structured version Visualization version GIF version | ||
| Description: Contradiction of constructibility: If a complex number 𝐴 has minimal polynomial 𝐹 over ℚ of a degree that is not a power of 2, then 𝐴 is not constructible. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| constrcon.d | ⊢ 𝐷 = (deg1‘(ℂfld ↾s ℚ)) |
| constrcon.m | ⊢ 𝑀 = (ℂfld minPoly ℚ) |
| constrcon.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| constrcon.f | ⊢ (𝜑 → 𝐹 = (𝑀‘𝐴)) |
| constrcon.1 | ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
| constrcon.2 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐷‘𝐹) ≠ (2↑𝑛)) |
| Ref | Expression |
|---|---|
| constrcon | ⊢ (𝜑 → ¬ 𝐴 ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrcon.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐷‘𝐹) ≠ (2↑𝑛)) | |
| 2 | 1 | neneqd 2930 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ¬ (𝐷‘𝐹) = (2↑𝑛)) |
| 3 | eqid 2729 | . . . . . . . 8 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
| 4 | eqid 2729 | . . . . . . . 8 ⊢ (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) | |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (deg1‘ℂfld) = (deg1‘ℂfld) | |
| 6 | constrcon.m | . . . . . . . 8 ⊢ 𝑀 = (ℂfld minPoly ℚ) | |
| 7 | cnfldfld 33314 | . . . . . . . . 9 ⊢ ℂfld ∈ Field | |
| 8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℂfld ∈ Field) |
| 9 | cndrng 21310 | . . . . . . . . . 10 ⊢ ℂfld ∈ DivRing | |
| 10 | qsubdrg 21336 | . . . . . . . . . . 11 ⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | |
| 11 | 10 | simpli 483 | . . . . . . . . . 10 ⊢ ℚ ∈ (SubRing‘ℂfld) |
| 12 | 3 | qdrng 27531 | . . . . . . . . . 10 ⊢ (ℂfld ↾s ℚ) ∈ DivRing |
| 13 | issdrg 20697 | . . . . . . . . . 10 ⊢ (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing)) | |
| 14 | 9, 11, 12, 13 | mpbir3an 1342 | . . . . . . . . 9 ⊢ ℚ ∈ (SubDRing‘ℂfld) |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℚ ∈ (SubDRing‘ℂfld)) |
| 16 | cnfldbas 21268 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
| 17 | constrcon.d | . . . . . . . . 9 ⊢ 𝐷 = (deg1‘(ℂfld ↾s ℚ)) | |
| 18 | constrcon.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 19 | eqidd 2730 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐷 = 𝐷) | |
| 20 | constrcon.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 = (𝑀‘𝐴)) | |
| 21 | 19, 20 | fveq12d 6865 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐷‘𝐹) = (𝐷‘(𝑀‘𝐴))) |
| 22 | constrcon.1 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) | |
| 23 | 21, 22 | eqeltrrd 2829 | . . . . . . . . 9 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
| 24 | 16, 6, 17, 8, 15, 18, 23 | minplyelirng 33705 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (ℂfld IntgRing ℚ)) |
| 25 | 3, 4, 5, 6, 8, 15, 24 | algextdeg 33715 | . . . . . . 7 ⊢ (𝜑 → ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = ((deg1‘ℂfld)‘(𝑀‘𝐴))) |
| 26 | eqid 2729 | . . . . . . . 8 ⊢ (Poly1‘(ℂfld ↾s ℚ)) = (Poly1‘(ℂfld ↾s ℚ)) | |
| 27 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘(Poly1‘(ℂfld ↾s ℚ))) = (Base‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 28 | eqid 2729 | . . . . . . . . 9 ⊢ (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ) | |
| 29 | eqid 2729 | . . . . . . . . 9 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
| 30 | eqid 2729 | . . . . . . . . 9 ⊢ {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} = {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} | |
| 31 | eqid 2729 | . . . . . . . . 9 ⊢ (RSpan‘(Poly1‘(ℂfld ↾s ℚ))) = (RSpan‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 32 | eqid 2729 | . . . . . . . . 9 ⊢ (idlGen1p‘(ℂfld ↾s ℚ)) = (idlGen1p‘(ℂfld ↾s ℚ)) | |
| 33 | 28, 26, 16, 8, 15, 18, 29, 30, 31, 32, 6 | minplycl 33696 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘(ℂfld ↾s ℚ)))) |
| 34 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℚ ∈ (SubRing‘ℂfld)) |
| 35 | 3, 5, 26, 27, 33, 34 | ressdeg1 33535 | . . . . . . 7 ⊢ (𝜑 → ((deg1‘ℂfld)‘(𝑀‘𝐴)) = ((deg1‘(ℂfld ↾s ℚ))‘(𝑀‘𝐴))) |
| 36 | 17, 19 | eqtr3id 2778 | . . . . . . . 8 ⊢ (𝜑 → (deg1‘(ℂfld ↾s ℚ)) = 𝐷) |
| 37 | 20 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘𝐴) = 𝐹) |
| 38 | 36, 37 | fveq12d 6865 | . . . . . . 7 ⊢ (𝜑 → ((deg1‘(ℂfld ↾s ℚ))‘(𝑀‘𝐴)) = (𝐷‘𝐹)) |
| 39 | 25, 35, 38 | 3eqtrd 2768 | . . . . . 6 ⊢ (𝜑 → ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (𝐷‘𝐹)) |
| 40 | 39 | eqeq1d 2731 | . . . . 5 ⊢ (𝜑 → (((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛) ↔ (𝐷‘𝐹) = (2↑𝑛))) |
| 41 | 40 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛) ↔ (𝐷‘𝐹) = (2↑𝑛))) |
| 42 | 2, 41 | mtbird 325 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ¬ ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 43 | 42 | nrexdv 3128 | . 2 ⊢ (𝜑 → ¬ ∃𝑛 ∈ ℕ0 ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 44 | eqid 2729 | . . 3 ⊢ (ℂfld fldGen (ℚ ∪ {𝐴})) = (ℂfld fldGen (ℚ ∪ {𝐴})) | |
| 45 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ Constr) → 𝐴 ∈ Constr) | |
| 46 | 3, 4, 44, 45 | constrext2chn 33749 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ Constr) → ∃𝑛 ∈ ℕ0 ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 47 | 43, 46 | mtand 815 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3405 ∪ cun 3912 {csn 4589 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 2c2 12241 ℕ0cn0 12442 ℚcq 12907 ↑cexp 14026 Basecbs 17179 ↾s cress 17200 0gc0g 17402 SubRingcsubrg 20478 DivRingcdr 20638 Fieldcfield 20639 SubDRingcsdrg 20695 RSpancrsp 21117 ℂfldccnfld 21264 Poly1cpl1 22061 evalSub1 ces1 22200 deg1cdg1 25959 idlGen1pcig1p 26035 fldGen cfldgen 33260 [:]cextdg 33636 minPoly cminply 33689 Constrcconstr 33719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-rpss 7699 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-ec 8673 df-qs 8677 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-inf 9394 df-oi 9463 df-r1 9717 df-rank 9718 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xmul 13074 df-ico 13312 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-word 14479 df-lsw 14528 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 df-prm 16642 df-pc 16808 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ocomp 17241 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-imas 17471 df-qus 17472 df-mre 17547 df-mrc 17548 df-mri 17549 df-acs 17550 df-proset 18255 df-drs 18256 df-poset 18274 df-ipo 18487 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-nsg 19056 df-eqg 19057 df-ghm 19145 df-gim 19191 df-cntz 19249 df-oppg 19278 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-irred 20268 df-invr 20297 df-dvr 20310 df-rhm 20381 df-nzr 20422 df-subrng 20455 df-subrg 20479 df-rlreg 20603 df-domn 20604 df-idom 20605 df-drng 20640 df-field 20641 df-sdrg 20696 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lmhm 20929 df-lmim 20930 df-lmic 20931 df-lbs 20982 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 df-2idl 21160 df-lpidl 21232 df-lpir 21233 df-pid 21247 df-cnfld 21265 df-dsmm 21641 df-frlm 21656 df-uvc 21692 df-lindf 21715 df-linds 21716 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-evls 21981 df-evl 21982 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-coe1 22067 df-evls1 22202 df-evl1 22203 df-mdeg 25960 df-deg1 25961 df-mon1 26036 df-uc1p 26037 df-q1p 26038 df-r1p 26039 df-ig1p 26040 df-chn 32931 df-fldgen 33261 df-mxidl 33431 df-dim 33595 df-fldext 33637 df-extdg 33638 df-irng 33679 df-minply 33690 df-constr 33720 |
| This theorem is referenced by: 2sqr3nconstr 33771 cos9thpinconstrlem2 33780 |
| Copyright terms: Public domain | W3C validator |