| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrcon | Structured version Visualization version GIF version | ||
| Description: Contradiction of constuctibility: If a complex number 𝐴 has minimal polynomial 𝐹 over ℚ of a degree that is not a power of 2, then 𝐴 is not constructible. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| constrcon.d | ⊢ 𝐷 = (deg1‘(ℂfld ↾s ℚ)) |
| constrcon.m | ⊢ 𝑀 = (ℂfld minPoly ℚ) |
| constrcon.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| constrcon.f | ⊢ (𝜑 → 𝐹 = (𝑀‘𝐴)) |
| constrcon.1 | ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
| constrcon.2 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐷‘𝐹) ≠ (2↑𝑛)) |
| Ref | Expression |
|---|---|
| constrcon | ⊢ (𝜑 → ¬ 𝐴 ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrcon.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐷‘𝐹) ≠ (2↑𝑛)) | |
| 2 | 1 | neneqd 2936 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ¬ (𝐷‘𝐹) = (2↑𝑛)) |
| 3 | eqid 2734 | . . . . . . . 8 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
| 4 | eqid 2734 | . . . . . . . 8 ⊢ (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) | |
| 5 | eqid 2734 | . . . . . . . 8 ⊢ (deg1‘ℂfld) = (deg1‘ℂfld) | |
| 6 | constrcon.m | . . . . . . . 8 ⊢ 𝑀 = (ℂfld minPoly ℚ) | |
| 7 | cnfldfld 33297 | . . . . . . . . 9 ⊢ ℂfld ∈ Field | |
| 8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℂfld ∈ Field) |
| 9 | cndrng 21372 | . . . . . . . . . 10 ⊢ ℂfld ∈ DivRing | |
| 10 | qsubdrg 21398 | . . . . . . . . . . 11 ⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | |
| 11 | 10 | simpli 483 | . . . . . . . . . 10 ⊢ ℚ ∈ (SubRing‘ℂfld) |
| 12 | 3 | qdrng 27599 | . . . . . . . . . 10 ⊢ (ℂfld ↾s ℚ) ∈ DivRing |
| 13 | issdrg 20756 | . . . . . . . . . 10 ⊢ (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing)) | |
| 14 | 9, 11, 12, 13 | mpbir3an 1341 | . . . . . . . . 9 ⊢ ℚ ∈ (SubDRing‘ℂfld) |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℚ ∈ (SubDRing‘ℂfld)) |
| 16 | cnfldbas 21329 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
| 17 | constrcon.d | . . . . . . . . 9 ⊢ 𝐷 = (deg1‘(ℂfld ↾s ℚ)) | |
| 18 | constrcon.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 19 | eqidd 2735 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐷 = 𝐷) | |
| 20 | constrcon.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 = (𝑀‘𝐴)) | |
| 21 | 19, 20 | fveq12d 6892 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐷‘𝐹) = (𝐷‘(𝑀‘𝐴))) |
| 22 | constrcon.1 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) | |
| 23 | 21, 22 | eqeltrrd 2834 | . . . . . . . . 9 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
| 24 | 16, 6, 17, 8, 15, 18, 23 | minplyelirng 33686 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (ℂfld IntgRing ℚ)) |
| 25 | 3, 4, 5, 6, 8, 15, 24 | algextdeg 33696 | . . . . . . 7 ⊢ (𝜑 → ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = ((deg1‘ℂfld)‘(𝑀‘𝐴))) |
| 26 | eqid 2734 | . . . . . . . 8 ⊢ (Poly1‘(ℂfld ↾s ℚ)) = (Poly1‘(ℂfld ↾s ℚ)) | |
| 27 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘(Poly1‘(ℂfld ↾s ℚ))) = (Base‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 28 | eqid 2734 | . . . . . . . . 9 ⊢ (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ) | |
| 29 | eqid 2734 | . . . . . . . . 9 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
| 30 | eqid 2734 | . . . . . . . . 9 ⊢ {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} = {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} | |
| 31 | eqid 2734 | . . . . . . . . 9 ⊢ (RSpan‘(Poly1‘(ℂfld ↾s ℚ))) = (RSpan‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 32 | eqid 2734 | . . . . . . . . 9 ⊢ (idlGen1p‘(ℂfld ↾s ℚ)) = (idlGen1p‘(ℂfld ↾s ℚ)) | |
| 33 | 28, 26, 16, 8, 15, 18, 29, 30, 31, 32, 6 | minplycl 33677 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘(ℂfld ↾s ℚ)))) |
| 34 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℚ ∈ (SubRing‘ℂfld)) |
| 35 | 3, 5, 26, 27, 33, 34 | ressdeg1 33517 | . . . . . . 7 ⊢ (𝜑 → ((deg1‘ℂfld)‘(𝑀‘𝐴)) = ((deg1‘(ℂfld ↾s ℚ))‘(𝑀‘𝐴))) |
| 36 | 17, 19 | eqtr3id 2783 | . . . . . . . 8 ⊢ (𝜑 → (deg1‘(ℂfld ↾s ℚ)) = 𝐷) |
| 37 | 20 | eqcomd 2740 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘𝐴) = 𝐹) |
| 38 | 36, 37 | fveq12d 6892 | . . . . . . 7 ⊢ (𝜑 → ((deg1‘(ℂfld ↾s ℚ))‘(𝑀‘𝐴)) = (𝐷‘𝐹)) |
| 39 | 25, 35, 38 | 3eqtrd 2773 | . . . . . 6 ⊢ (𝜑 → ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (𝐷‘𝐹)) |
| 40 | 39 | eqeq1d 2736 | . . . . 5 ⊢ (𝜑 → (((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛) ↔ (𝐷‘𝐹) = (2↑𝑛))) |
| 41 | 40 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛) ↔ (𝐷‘𝐹) = (2↑𝑛))) |
| 42 | 2, 41 | mtbird 325 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ¬ ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 43 | 42 | nrexdv 3136 | . 2 ⊢ (𝜑 → ¬ ∃𝑛 ∈ ℕ0 ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 44 | eqid 2734 | . . 3 ⊢ (ℂfld fldGen (ℚ ∪ {𝐴})) = (ℂfld fldGen (ℚ ∪ {𝐴})) | |
| 45 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ Constr) → 𝐴 ∈ Constr) | |
| 46 | 3, 4, 44, 45 | constrext2chn 33722 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ Constr) → ∃𝑛 ∈ ℕ0 ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 47 | 43, 46 | mtand 815 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 {crab 3419 ∪ cun 3929 {csn 4606 dom cdm 5665 ‘cfv 6540 (class class class)co 7412 ℂcc 11134 2c2 12302 ℕ0cn0 12508 ℚcq 12971 ↑cexp 14083 Basecbs 17228 ↾s cress 17251 0gc0g 17454 SubRingcsubrg 20536 DivRingcdr 20696 Fieldcfield 20697 SubDRingcsdrg 20754 RSpancrsp 21178 ℂfldccnfld 21325 Poly1cpl1 22125 evalSub1 ces1 22264 deg1cdg1 26028 idlGen1pcig1p 26104 fldGen cfldgen 33243 [:]cextdg 33618 minPoly cminply 33670 Constrcconstr 33700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-reg 9613 ax-inf2 9662 ax-ac2 10484 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 ax-mulf 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-ofr 7679 df-rpss 7724 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8726 df-ec 8728 df-qs 8732 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9383 df-sup 9463 df-inf 9464 df-oi 9531 df-r1 9785 df-rank 9786 df-dju 9922 df-card 9960 df-acn 9963 df-ac 10137 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-xnn0 12582 df-z 12596 df-dec 12716 df-uz 12860 df-q 12972 df-rp 13016 df-xneg 13135 df-xmul 13137 df-ico 13374 df-fz 13529 df-fzo 13676 df-fl 13813 df-mod 13891 df-seq 14024 df-exp 14084 df-hash 14351 df-word 14534 df-lsw 14582 df-concat 14590 df-s1 14615 df-substr 14660 df-pfx 14690 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-dvds 16272 df-gcd 16513 df-prm 16690 df-pc 16856 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-starv 17287 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ocomp 17293 df-ds 17294 df-unif 17295 df-hom 17296 df-cco 17297 df-0g 17456 df-gsum 17457 df-prds 17462 df-pws 17464 df-imas 17523 df-qus 17524 df-mre 17599 df-mrc 17600 df-mri 17601 df-acs 17602 df-proset 18309 df-drs 18310 df-poset 18328 df-ipo 18541 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-mhm 18764 df-submnd 18765 df-grp 18922 df-minusg 18923 df-sbg 18924 df-mulg 19054 df-subg 19109 df-nsg 19110 df-eqg 19111 df-ghm 19199 df-gim 19245 df-cntz 19303 df-oppg 19332 df-lsm 19621 df-cmn 19767 df-abl 19768 df-mgp 20105 df-rng 20117 df-ur 20146 df-srg 20151 df-ring 20199 df-cring 20200 df-oppr 20301 df-dvdsr 20324 df-unit 20325 df-irred 20326 df-invr 20355 df-dvr 20368 df-rhm 20439 df-nzr 20480 df-subrng 20513 df-subrg 20537 df-rlreg 20661 df-domn 20662 df-idom 20663 df-drng 20698 df-field 20699 df-sdrg 20755 df-lmod 20827 df-lss 20897 df-lsp 20937 df-lmhm 20988 df-lmim 20989 df-lmic 20990 df-lbs 21041 df-lvec 21069 df-sra 21139 df-rgmod 21140 df-lidl 21179 df-rsp 21180 df-2idl 21221 df-lpidl 21293 df-lpir 21294 df-pid 21308 df-cnfld 21326 df-dsmm 21705 df-frlm 21720 df-uvc 21756 df-lindf 21779 df-linds 21780 df-assa 21826 df-asp 21827 df-ascl 21828 df-psr 21882 df-mvr 21883 df-mpl 21884 df-opsr 21886 df-evls 22045 df-evl 22046 df-psr1 22128 df-vr1 22129 df-ply1 22130 df-coe1 22131 df-evls1 22266 df-evl1 22267 df-mdeg 26029 df-deg1 26030 df-mon1 26105 df-uc1p 26106 df-q1p 26107 df-r1p 26108 df-ig1p 26109 df-chn 32925 df-fldgen 33244 df-mxidl 33414 df-dim 33576 df-fldext 33619 df-extdg 33620 df-irng 33662 df-minply 33671 df-constr 33701 |
| This theorem is referenced by: 2sqr3nconstr 33725 |
| Copyright terms: Public domain | W3C validator |