| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > constrcon | Structured version Visualization version GIF version | ||
| Description: Contradiction of constructibility: If a complex number 𝐴 has minimal polynomial 𝐹 over ℚ of a degree that is not a power of 2, then 𝐴 is not constructible. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| constrcon.d | ⊢ 𝐷 = (deg1‘(ℂfld ↾s ℚ)) |
| constrcon.m | ⊢ 𝑀 = (ℂfld minPoly ℚ) |
| constrcon.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| constrcon.f | ⊢ (𝜑 → 𝐹 = (𝑀‘𝐴)) |
| constrcon.1 | ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) |
| constrcon.2 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐷‘𝐹) ≠ (2↑𝑛)) |
| Ref | Expression |
|---|---|
| constrcon | ⊢ (𝜑 → ¬ 𝐴 ∈ Constr) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constrcon.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐷‘𝐹) ≠ (2↑𝑛)) | |
| 2 | 1 | neneqd 2936 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ¬ (𝐷‘𝐹) = (2↑𝑛)) |
| 3 | eqid 2734 | . . . . . . . 8 ⊢ (ℂfld ↾s ℚ) = (ℂfld ↾s ℚ) | |
| 4 | eqid 2734 | . . . . . . . 8 ⊢ (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) | |
| 5 | eqid 2734 | . . . . . . . 8 ⊢ (deg1‘ℂfld) = (deg1‘ℂfld) | |
| 6 | constrcon.m | . . . . . . . 8 ⊢ 𝑀 = (ℂfld minPoly ℚ) | |
| 7 | cnfldfld 33295 | . . . . . . . . 9 ⊢ ℂfld ∈ Field | |
| 8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℂfld ∈ Field) |
| 9 | cndrng 21348 | . . . . . . . . . 10 ⊢ ℂfld ∈ DivRing | |
| 10 | qsubdrg 21374 | . . . . . . . . . . 11 ⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | |
| 11 | 10 | simpli 483 | . . . . . . . . . 10 ⊢ ℚ ∈ (SubRing‘ℂfld) |
| 12 | 3 | qdrng 27569 | . . . . . . . . . 10 ⊢ (ℂfld ↾s ℚ) ∈ DivRing |
| 13 | issdrg 20735 | . . . . . . . . . 10 ⊢ (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing)) | |
| 14 | 9, 11, 12, 13 | mpbir3an 1341 | . . . . . . . . 9 ⊢ ℚ ∈ (SubDRing‘ℂfld) |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℚ ∈ (SubDRing‘ℂfld)) |
| 16 | cnfldbas 21306 | . . . . . . . . 9 ⊢ ℂ = (Base‘ℂfld) | |
| 17 | constrcon.d | . . . . . . . . 9 ⊢ 𝐷 = (deg1‘(ℂfld ↾s ℚ)) | |
| 18 | constrcon.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 19 | eqidd 2735 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐷 = 𝐷) | |
| 20 | constrcon.f | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹 = (𝑀‘𝐴)) | |
| 21 | 19, 20 | fveq12d 6880 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐷‘𝐹) = (𝐷‘(𝑀‘𝐴))) |
| 22 | constrcon.1 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐷‘𝐹) ∈ ℕ0) | |
| 23 | 21, 22 | eqeltrrd 2834 | . . . . . . . . 9 ⊢ (𝜑 → (𝐷‘(𝑀‘𝐴)) ∈ ℕ0) |
| 24 | 16, 6, 17, 8, 15, 18, 23 | minplyelirng 33684 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (ℂfld IntgRing ℚ)) |
| 25 | 3, 4, 5, 6, 8, 15, 24 | algextdeg 33694 | . . . . . . 7 ⊢ (𝜑 → ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = ((deg1‘ℂfld)‘(𝑀‘𝐴))) |
| 26 | eqid 2734 | . . . . . . . 8 ⊢ (Poly1‘(ℂfld ↾s ℚ)) = (Poly1‘(ℂfld ↾s ℚ)) | |
| 27 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘(Poly1‘(ℂfld ↾s ℚ))) = (Base‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 28 | eqid 2734 | . . . . . . . . 9 ⊢ (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ) | |
| 29 | eqid 2734 | . . . . . . . . 9 ⊢ (0g‘ℂfld) = (0g‘ℂfld) | |
| 30 | eqid 2734 | . . . . . . . . 9 ⊢ {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} = {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} | |
| 31 | eqid 2734 | . . . . . . . . 9 ⊢ (RSpan‘(Poly1‘(ℂfld ↾s ℚ))) = (RSpan‘(Poly1‘(ℂfld ↾s ℚ))) | |
| 32 | eqid 2734 | . . . . . . . . 9 ⊢ (idlGen1p‘(ℂfld ↾s ℚ)) = (idlGen1p‘(ℂfld ↾s ℚ)) | |
| 33 | 28, 26, 16, 8, 15, 18, 29, 30, 31, 32, 6 | minplycl 33675 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (Base‘(Poly1‘(ℂfld ↾s ℚ)))) |
| 34 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℚ ∈ (SubRing‘ℂfld)) |
| 35 | 3, 5, 26, 27, 33, 34 | ressdeg1 33515 | . . . . . . 7 ⊢ (𝜑 → ((deg1‘ℂfld)‘(𝑀‘𝐴)) = ((deg1‘(ℂfld ↾s ℚ))‘(𝑀‘𝐴))) |
| 36 | 17, 19 | eqtr3id 2783 | . . . . . . . 8 ⊢ (𝜑 → (deg1‘(ℂfld ↾s ℚ)) = 𝐷) |
| 37 | 20 | eqcomd 2740 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘𝐴) = 𝐹) |
| 38 | 36, 37 | fveq12d 6880 | . . . . . . 7 ⊢ (𝜑 → ((deg1‘(ℂfld ↾s ℚ))‘(𝑀‘𝐴)) = (𝐷‘𝐹)) |
| 39 | 25, 35, 38 | 3eqtrd 2773 | . . . . . 6 ⊢ (𝜑 → ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (𝐷‘𝐹)) |
| 40 | 39 | eqeq1d 2736 | . . . . 5 ⊢ (𝜑 → (((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛) ↔ (𝐷‘𝐹) = (2↑𝑛))) |
| 41 | 40 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛) ↔ (𝐷‘𝐹) = (2↑𝑛))) |
| 42 | 2, 41 | mtbird 325 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ¬ ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 43 | 42 | nrexdv 3133 | . 2 ⊢ (𝜑 → ¬ ∃𝑛 ∈ ℕ0 ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 44 | eqid 2734 | . . 3 ⊢ (ℂfld fldGen (ℚ ∪ {𝐴})) = (ℂfld fldGen (ℚ ∪ {𝐴})) | |
| 45 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ Constr) → 𝐴 ∈ Constr) | |
| 46 | 3, 4, 44, 45 | constrext2chn 33728 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ Constr) → ∃𝑛 ∈ ℕ0 ((ℂfld ↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld ↾s ℚ)) = (2↑𝑛)) |
| 47 | 43, 46 | mtand 815 | 1 ⊢ (𝜑 → ¬ 𝐴 ∈ Constr) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 {crab 3413 ∪ cun 3922 {csn 4599 dom cdm 5652 ‘cfv 6528 (class class class)co 7400 ℂcc 11120 2c2 12288 ℕ0cn0 12494 ℚcq 12957 ↑cexp 14069 Basecbs 17215 ↾s cress 17238 0gc0g 17440 SubRingcsubrg 20516 DivRingcdr 20676 Fieldcfield 20677 SubDRingcsdrg 20733 RSpancrsp 21155 ℂfldccnfld 21302 Poly1cpl1 22099 evalSub1 ces1 22238 deg1cdg1 25998 idlGen1pcig1p 26074 fldGen cfldgen 33241 [:]cextdg 33616 minPoly cminply 33668 Constrcconstr 33698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-reg 9599 ax-inf2 9648 ax-ac2 10470 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-pre-sup 11200 ax-addf 11201 ax-mulf 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-iin 4968 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-ofr 7667 df-rpss 7712 df-om 7857 df-1st 7983 df-2nd 7984 df-supp 8155 df-tpos 8220 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-2o 8476 df-oadd 8479 df-er 8714 df-ec 8716 df-qs 8720 df-map 8837 df-pm 8838 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-fsupp 9369 df-sup 9449 df-inf 9450 df-oi 9517 df-r1 9771 df-rank 9772 df-dju 9908 df-card 9946 df-acn 9949 df-ac 10123 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-xnn0 12568 df-z 12582 df-dec 12702 df-uz 12846 df-q 12958 df-rp 13002 df-xneg 13121 df-xmul 13123 df-ico 13360 df-fz 13515 df-fzo 13662 df-fl 13799 df-mod 13877 df-seq 14010 df-exp 14070 df-hash 14339 df-word 14522 df-lsw 14570 df-concat 14578 df-s1 14603 df-substr 14648 df-pfx 14678 df-cj 15107 df-re 15108 df-im 15109 df-sqrt 15243 df-abs 15244 df-dvds 16260 df-gcd 16501 df-prm 16678 df-pc 16844 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-starv 17273 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ocomp 17279 df-ds 17280 df-unif 17281 df-hom 17282 df-cco 17283 df-0g 17442 df-gsum 17443 df-prds 17448 df-pws 17450 df-imas 17509 df-qus 17510 df-mre 17585 df-mrc 17586 df-mri 17587 df-acs 17588 df-proset 18293 df-drs 18294 df-poset 18312 df-ipo 18525 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mhm 18748 df-submnd 18749 df-grp 18906 df-minusg 18907 df-sbg 18908 df-mulg 19038 df-subg 19093 df-nsg 19094 df-eqg 19095 df-ghm 19183 df-gim 19229 df-cntz 19287 df-oppg 19316 df-lsm 19604 df-cmn 19750 df-abl 19751 df-mgp 20088 df-rng 20100 df-ur 20129 df-srg 20134 df-ring 20182 df-cring 20183 df-oppr 20284 df-dvdsr 20304 df-unit 20305 df-irred 20306 df-invr 20335 df-dvr 20348 df-rhm 20419 df-nzr 20460 df-subrng 20493 df-subrg 20517 df-rlreg 20641 df-domn 20642 df-idom 20643 df-drng 20678 df-field 20679 df-sdrg 20734 df-lmod 20806 df-lss 20876 df-lsp 20916 df-lmhm 20967 df-lmim 20968 df-lmic 20969 df-lbs 21020 df-lvec 21048 df-sra 21118 df-rgmod 21119 df-lidl 21156 df-rsp 21157 df-2idl 21198 df-lpidl 21270 df-lpir 21271 df-pid 21285 df-cnfld 21303 df-dsmm 21679 df-frlm 21694 df-uvc 21730 df-lindf 21753 df-linds 21754 df-assa 21800 df-asp 21801 df-ascl 21802 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-evls 22019 df-evl 22020 df-psr1 22102 df-vr1 22103 df-ply1 22104 df-coe1 22105 df-evls1 22240 df-evl1 22241 df-mdeg 25999 df-deg1 26000 df-mon1 26075 df-uc1p 26076 df-q1p 26077 df-r1p 26078 df-ig1p 26079 df-chn 32923 df-fldgen 33242 df-mxidl 33412 df-dim 33574 df-fldext 33617 df-extdg 33618 df-irng 33660 df-minply 33669 df-constr 33699 |
| This theorem is referenced by: 2sqr3nconstr 33750 |
| Copyright terms: Public domain | W3C validator |