Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrcon Structured version   Visualization version   GIF version

Theorem constrcon 33743
Description: Contradiction of constructibility: If a complex number 𝐴 has minimal polynomial 𝐹 over of a degree that is not a power of 2, then 𝐴 is not constructible. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
constrcon.d 𝐷 = (deg1‘(ℂflds ℚ))
constrcon.m 𝑀 = (ℂfld minPoly ℚ)
constrcon.a (𝜑𝐴 ∈ ℂ)
constrcon.f (𝜑𝐹 = (𝑀𝐴))
constrcon.1 (𝜑 → (𝐷𝐹) ∈ ℕ0)
constrcon.2 ((𝜑𝑛 ∈ ℕ0) → (𝐷𝐹) ≠ (2↑𝑛))
Assertion
Ref Expression
constrcon (𝜑 → ¬ 𝐴 ∈ Constr)
Distinct variable groups:   𝐴,𝑛   𝜑,𝑛
Allowed substitution hints:   𝐷(𝑛)   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem constrcon
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 constrcon.2 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝐷𝐹) ≠ (2↑𝑛))
21neneqd 2936 . . . 4 ((𝜑𝑛 ∈ ℕ0) → ¬ (𝐷𝐹) = (2↑𝑛))
3 eqid 2734 . . . . . . . 8 (ℂflds ℚ) = (ℂflds ℚ)
4 eqid 2734 . . . . . . . 8 (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
5 eqid 2734 . . . . . . . 8 (deg1‘ℂfld) = (deg1‘ℂfld)
6 constrcon.m . . . . . . . 8 𝑀 = (ℂfld minPoly ℚ)
7 cnfldfld 33295 . . . . . . . . 9 fld ∈ Field
87a1i 11 . . . . . . . 8 (𝜑 → ℂfld ∈ Field)
9 cndrng 21348 . . . . . . . . . 10 fld ∈ DivRing
10 qsubdrg 21374 . . . . . . . . . . 11 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1110simpli 483 . . . . . . . . . 10 ℚ ∈ (SubRing‘ℂfld)
123qdrng 27569 . . . . . . . . . 10 (ℂflds ℚ) ∈ DivRing
13 issdrg 20735 . . . . . . . . . 10 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
149, 11, 12, 13mpbir3an 1341 . . . . . . . . 9 ℚ ∈ (SubDRing‘ℂfld)
1514a1i 11 . . . . . . . 8 (𝜑 → ℚ ∈ (SubDRing‘ℂfld))
16 cnfldbas 21306 . . . . . . . . 9 ℂ = (Base‘ℂfld)
17 constrcon.d . . . . . . . . 9 𝐷 = (deg1‘(ℂflds ℚ))
18 constrcon.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
19 eqidd 2735 . . . . . . . . . . 11 (𝜑𝐷 = 𝐷)
20 constrcon.f . . . . . . . . . . 11 (𝜑𝐹 = (𝑀𝐴))
2119, 20fveq12d 6880 . . . . . . . . . 10 (𝜑 → (𝐷𝐹) = (𝐷‘(𝑀𝐴)))
22 constrcon.1 . . . . . . . . . 10 (𝜑 → (𝐷𝐹) ∈ ℕ0)
2321, 22eqeltrrd 2834 . . . . . . . . 9 (𝜑 → (𝐷‘(𝑀𝐴)) ∈ ℕ0)
2416, 6, 17, 8, 15, 18, 23minplyelirng 33684 . . . . . . . 8 (𝜑𝐴 ∈ (ℂfld IntgRing ℚ))
253, 4, 5, 6, 8, 15, 24algextdeg 33694 . . . . . . 7 (𝜑 → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = ((deg1‘ℂfld)‘(𝑀𝐴)))
26 eqid 2734 . . . . . . . 8 (Poly1‘(ℂflds ℚ)) = (Poly1‘(ℂflds ℚ))
27 eqid 2734 . . . . . . . 8 (Base‘(Poly1‘(ℂflds ℚ))) = (Base‘(Poly1‘(ℂflds ℚ)))
28 eqid 2734 . . . . . . . . 9 (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ)
29 eqid 2734 . . . . . . . . 9 (0g‘ℂfld) = (0g‘ℂfld)
30 eqid 2734 . . . . . . . . 9 {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} = {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)}
31 eqid 2734 . . . . . . . . 9 (RSpan‘(Poly1‘(ℂflds ℚ))) = (RSpan‘(Poly1‘(ℂflds ℚ)))
32 eqid 2734 . . . . . . . . 9 (idlGen1p‘(ℂflds ℚ)) = (idlGen1p‘(ℂflds ℚ))
3328, 26, 16, 8, 15, 18, 29, 30, 31, 32, 6minplycl 33675 . . . . . . . 8 (𝜑 → (𝑀𝐴) ∈ (Base‘(Poly1‘(ℂflds ℚ))))
3411a1i 11 . . . . . . . 8 (𝜑 → ℚ ∈ (SubRing‘ℂfld))
353, 5, 26, 27, 33, 34ressdeg1 33515 . . . . . . 7 (𝜑 → ((deg1‘ℂfld)‘(𝑀𝐴)) = ((deg1‘(ℂflds ℚ))‘(𝑀𝐴)))
3617, 19eqtr3id 2783 . . . . . . . 8 (𝜑 → (deg1‘(ℂflds ℚ)) = 𝐷)
3720eqcomd 2740 . . . . . . . 8 (𝜑 → (𝑀𝐴) = 𝐹)
3836, 37fveq12d 6880 . . . . . . 7 (𝜑 → ((deg1‘(ℂflds ℚ))‘(𝑀𝐴)) = (𝐷𝐹))
3925, 35, 383eqtrd 2773 . . . . . 6 (𝜑 → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (𝐷𝐹))
4039eqeq1d 2736 . . . . 5 (𝜑 → (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛) ↔ (𝐷𝐹) = (2↑𝑛)))
4140adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛) ↔ (𝐷𝐹) = (2↑𝑛)))
422, 41mtbird 325 . . 3 ((𝜑𝑛 ∈ ℕ0) → ¬ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛))
4342nrexdv 3133 . 2 (𝜑 → ¬ ∃𝑛 ∈ ℕ0 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛))
44 eqid 2734 . . 3 (ℂfld fldGen (ℚ ∪ {𝐴})) = (ℂfld fldGen (ℚ ∪ {𝐴}))
45 simpr 484 . . 3 ((𝜑𝐴 ∈ Constr) → 𝐴 ∈ Constr)
463, 4, 44, 45constrext2chn 33728 . 2 ((𝜑𝐴 ∈ Constr) → ∃𝑛 ∈ ℕ0 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛))
4743, 46mtand 815 1 (𝜑 → ¬ 𝐴 ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3413  cun 3922  {csn 4599  dom cdm 5652  cfv 6528  (class class class)co 7400  cc 11120  2c2 12288  0cn0 12494  cq 12957  cexp 14069  Basecbs 17215  s cress 17238  0gc0g 17440  SubRingcsubrg 20516  DivRingcdr 20676  Fieldcfield 20677  SubDRingcsdrg 20733  RSpancrsp 21155  fldccnfld 21302  Poly1cpl1 22099   evalSub1 ces1 22238  deg1cdg1 25998  idlGen1pcig1p 26074   fldGen cfldgen 33241  [:]cextdg 33616   minPoly cminply 33668  Constrcconstr 33698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-reg 9599  ax-inf2 9648  ax-ac2 10470  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200  ax-addf 11201  ax-mulf 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-ofr 7667  df-rpss 7712  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-tpos 8220  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-oadd 8479  df-er 8714  df-ec 8716  df-qs 8720  df-map 8837  df-pm 8838  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-sup 9449  df-inf 9450  df-oi 9517  df-r1 9771  df-rank 9772  df-dju 9908  df-card 9946  df-acn 9949  df-ac 10123  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-xnn0 12568  df-z 12582  df-dec 12702  df-uz 12846  df-q 12958  df-rp 13002  df-xneg 13121  df-xmul 13123  df-ico 13360  df-fz 13515  df-fzo 13662  df-fl 13799  df-mod 13877  df-seq 14010  df-exp 14070  df-hash 14339  df-word 14522  df-lsw 14570  df-concat 14578  df-s1 14603  df-substr 14648  df-pfx 14678  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-dvds 16260  df-gcd 16501  df-prm 16678  df-pc 16844  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ocomp 17279  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-0g 17442  df-gsum 17443  df-prds 17448  df-pws 17450  df-imas 17509  df-qus 17510  df-mre 17585  df-mrc 17586  df-mri 17587  df-acs 17588  df-proset 18293  df-drs 18294  df-poset 18312  df-ipo 18525  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18748  df-submnd 18749  df-grp 18906  df-minusg 18907  df-sbg 18908  df-mulg 19038  df-subg 19093  df-nsg 19094  df-eqg 19095  df-ghm 19183  df-gim 19229  df-cntz 19287  df-oppg 19316  df-lsm 19604  df-cmn 19750  df-abl 19751  df-mgp 20088  df-rng 20100  df-ur 20129  df-srg 20134  df-ring 20182  df-cring 20183  df-oppr 20284  df-dvdsr 20304  df-unit 20305  df-irred 20306  df-invr 20335  df-dvr 20348  df-rhm 20419  df-nzr 20460  df-subrng 20493  df-subrg 20517  df-rlreg 20641  df-domn 20642  df-idom 20643  df-drng 20678  df-field 20679  df-sdrg 20734  df-lmod 20806  df-lss 20876  df-lsp 20916  df-lmhm 20967  df-lmim 20968  df-lmic 20969  df-lbs 21020  df-lvec 21048  df-sra 21118  df-rgmod 21119  df-lidl 21156  df-rsp 21157  df-2idl 21198  df-lpidl 21270  df-lpir 21271  df-pid 21285  df-cnfld 21303  df-dsmm 21679  df-frlm 21694  df-uvc 21730  df-lindf 21753  df-linds 21754  df-assa 21800  df-asp 21801  df-ascl 21802  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-evls 22019  df-evl 22020  df-psr1 22102  df-vr1 22103  df-ply1 22104  df-coe1 22105  df-evls1 22240  df-evl1 22241  df-mdeg 25999  df-deg1 26000  df-mon1 26075  df-uc1p 26076  df-q1p 26077  df-r1p 26078  df-ig1p 26079  df-chn 32923  df-fldgen 33242  df-mxidl 33412  df-dim 33574  df-fldext 33617  df-extdg 33618  df-irng 33660  df-minply 33669  df-constr 33699
This theorem is referenced by:  2sqr3nconstr  33750
  Copyright terms: Public domain W3C validator