Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrcon Structured version   Visualization version   GIF version

Theorem constrcon 33723
Description: Contradiction of constuctibility: If a complex number 𝐴 has minimal polynomial 𝐹 over of a degree that is not a power of 2, then 𝐴 is not constructible. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
constrcon.d 𝐷 = (deg1‘(ℂflds ℚ))
constrcon.m 𝑀 = (ℂfld minPoly ℚ)
constrcon.a (𝜑𝐴 ∈ ℂ)
constrcon.f (𝜑𝐹 = (𝑀𝐴))
constrcon.1 (𝜑 → (𝐷𝐹) ∈ ℕ0)
constrcon.2 ((𝜑𝑛 ∈ ℕ0) → (𝐷𝐹) ≠ (2↑𝑛))
Assertion
Ref Expression
constrcon (𝜑 → ¬ 𝐴 ∈ Constr)
Distinct variable groups:   𝐴,𝑛   𝜑,𝑛
Allowed substitution hints:   𝐷(𝑛)   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem constrcon
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 constrcon.2 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝐷𝐹) ≠ (2↑𝑛))
21neneqd 2936 . . . 4 ((𝜑𝑛 ∈ ℕ0) → ¬ (𝐷𝐹) = (2↑𝑛))
3 eqid 2734 . . . . . . . 8 (ℂflds ℚ) = (ℂflds ℚ)
4 eqid 2734 . . . . . . . 8 (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
5 eqid 2734 . . . . . . . 8 (deg1‘ℂfld) = (deg1‘ℂfld)
6 constrcon.m . . . . . . . 8 𝑀 = (ℂfld minPoly ℚ)
7 cnfldfld 33297 . . . . . . . . 9 fld ∈ Field
87a1i 11 . . . . . . . 8 (𝜑 → ℂfld ∈ Field)
9 cndrng 21372 . . . . . . . . . 10 fld ∈ DivRing
10 qsubdrg 21398 . . . . . . . . . . 11 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1110simpli 483 . . . . . . . . . 10 ℚ ∈ (SubRing‘ℂfld)
123qdrng 27599 . . . . . . . . . 10 (ℂflds ℚ) ∈ DivRing
13 issdrg 20756 . . . . . . . . . 10 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
149, 11, 12, 13mpbir3an 1341 . . . . . . . . 9 ℚ ∈ (SubDRing‘ℂfld)
1514a1i 11 . . . . . . . 8 (𝜑 → ℚ ∈ (SubDRing‘ℂfld))
16 cnfldbas 21329 . . . . . . . . 9 ℂ = (Base‘ℂfld)
17 constrcon.d . . . . . . . . 9 𝐷 = (deg1‘(ℂflds ℚ))
18 constrcon.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
19 eqidd 2735 . . . . . . . . . . 11 (𝜑𝐷 = 𝐷)
20 constrcon.f . . . . . . . . . . 11 (𝜑𝐹 = (𝑀𝐴))
2119, 20fveq12d 6892 . . . . . . . . . 10 (𝜑 → (𝐷𝐹) = (𝐷‘(𝑀𝐴)))
22 constrcon.1 . . . . . . . . . 10 (𝜑 → (𝐷𝐹) ∈ ℕ0)
2321, 22eqeltrrd 2834 . . . . . . . . 9 (𝜑 → (𝐷‘(𝑀𝐴)) ∈ ℕ0)
2416, 6, 17, 8, 15, 18, 23minplyelirng 33686 . . . . . . . 8 (𝜑𝐴 ∈ (ℂfld IntgRing ℚ))
253, 4, 5, 6, 8, 15, 24algextdeg 33696 . . . . . . 7 (𝜑 → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = ((deg1‘ℂfld)‘(𝑀𝐴)))
26 eqid 2734 . . . . . . . 8 (Poly1‘(ℂflds ℚ)) = (Poly1‘(ℂflds ℚ))
27 eqid 2734 . . . . . . . 8 (Base‘(Poly1‘(ℂflds ℚ))) = (Base‘(Poly1‘(ℂflds ℚ)))
28 eqid 2734 . . . . . . . . 9 (ℂfld evalSub1 ℚ) = (ℂfld evalSub1 ℚ)
29 eqid 2734 . . . . . . . . 9 (0g‘ℂfld) = (0g‘ℂfld)
30 eqid 2734 . . . . . . . . 9 {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)} = {𝑞 ∈ dom (ℂfld evalSub1 ℚ) ∣ (((ℂfld evalSub1 ℚ)‘𝑞)‘𝐴) = (0g‘ℂfld)}
31 eqid 2734 . . . . . . . . 9 (RSpan‘(Poly1‘(ℂflds ℚ))) = (RSpan‘(Poly1‘(ℂflds ℚ)))
32 eqid 2734 . . . . . . . . 9 (idlGen1p‘(ℂflds ℚ)) = (idlGen1p‘(ℂflds ℚ))
3328, 26, 16, 8, 15, 18, 29, 30, 31, 32, 6minplycl 33677 . . . . . . . 8 (𝜑 → (𝑀𝐴) ∈ (Base‘(Poly1‘(ℂflds ℚ))))
3411a1i 11 . . . . . . . 8 (𝜑 → ℚ ∈ (SubRing‘ℂfld))
353, 5, 26, 27, 33, 34ressdeg1 33517 . . . . . . 7 (𝜑 → ((deg1‘ℂfld)‘(𝑀𝐴)) = ((deg1‘(ℂflds ℚ))‘(𝑀𝐴)))
3617, 19eqtr3id 2783 . . . . . . . 8 (𝜑 → (deg1‘(ℂflds ℚ)) = 𝐷)
3720eqcomd 2740 . . . . . . . 8 (𝜑 → (𝑀𝐴) = 𝐹)
3836, 37fveq12d 6892 . . . . . . 7 (𝜑 → ((deg1‘(ℂflds ℚ))‘(𝑀𝐴)) = (𝐷𝐹))
3925, 35, 383eqtrd 2773 . . . . . 6 (𝜑 → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (𝐷𝐹))
4039eqeq1d 2736 . . . . 5 (𝜑 → (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛) ↔ (𝐷𝐹) = (2↑𝑛)))
4140adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛) ↔ (𝐷𝐹) = (2↑𝑛)))
422, 41mtbird 325 . . 3 ((𝜑𝑛 ∈ ℕ0) → ¬ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛))
4342nrexdv 3136 . 2 (𝜑 → ¬ ∃𝑛 ∈ ℕ0 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛))
44 eqid 2734 . . 3 (ℂfld fldGen (ℚ ∪ {𝐴})) = (ℂfld fldGen (ℚ ∪ {𝐴}))
45 simpr 484 . . 3 ((𝜑𝐴 ∈ Constr) → 𝐴 ∈ Constr)
463, 4, 44, 45constrext2chn 33722 . 2 ((𝜑𝐴 ∈ Constr) → ∃𝑛 ∈ ℕ0 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) = (2↑𝑛))
4743, 46mtand 815 1 (𝜑 → ¬ 𝐴 ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3419  cun 3929  {csn 4606  dom cdm 5665  cfv 6540  (class class class)co 7412  cc 11134  2c2 12302  0cn0 12508  cq 12971  cexp 14083  Basecbs 17228  s cress 17251  0gc0g 17454  SubRingcsubrg 20536  DivRingcdr 20696  Fieldcfield 20697  SubDRingcsdrg 20754  RSpancrsp 21178  fldccnfld 21325  Poly1cpl1 22125   evalSub1 ces1 22264  deg1cdg1 26028  idlGen1pcig1p 26104   fldGen cfldgen 33243  [:]cextdg 33618   minPoly cminply 33670  Constrcconstr 33700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-reg 9613  ax-inf2 9662  ax-ac2 10484  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214  ax-addf 11215  ax-mulf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7678  df-ofr 7679  df-rpss 7724  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8726  df-ec 8728  df-qs 8732  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9383  df-sup 9463  df-inf 9464  df-oi 9531  df-r1 9785  df-rank 9786  df-dju 9922  df-card 9960  df-acn 9963  df-ac 10137  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-3 12311  df-4 12312  df-5 12313  df-6 12314  df-7 12315  df-8 12316  df-9 12317  df-n0 12509  df-xnn0 12582  df-z 12596  df-dec 12716  df-uz 12860  df-q 12972  df-rp 13016  df-xneg 13135  df-xmul 13137  df-ico 13374  df-fz 13529  df-fzo 13676  df-fl 13813  df-mod 13891  df-seq 14024  df-exp 14084  df-hash 14351  df-word 14534  df-lsw 14582  df-concat 14590  df-s1 14615  df-substr 14660  df-pfx 14690  df-cj 15119  df-re 15120  df-im 15121  df-sqrt 15255  df-abs 15256  df-dvds 16272  df-gcd 16513  df-prm 16690  df-pc 16856  df-struct 17165  df-sets 17182  df-slot 17200  df-ndx 17212  df-base 17229  df-ress 17252  df-plusg 17285  df-mulr 17286  df-starv 17287  df-sca 17288  df-vsca 17289  df-ip 17290  df-tset 17291  df-ple 17292  df-ocomp 17293  df-ds 17294  df-unif 17295  df-hom 17296  df-cco 17297  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-imas 17523  df-qus 17524  df-mre 17599  df-mrc 17600  df-mri 17601  df-acs 17602  df-proset 18309  df-drs 18310  df-poset 18328  df-ipo 18541  df-mgm 18621  df-sgrp 18700  df-mnd 18716  df-mhm 18764  df-submnd 18765  df-grp 18922  df-minusg 18923  df-sbg 18924  df-mulg 19054  df-subg 19109  df-nsg 19110  df-eqg 19111  df-ghm 19199  df-gim 19245  df-cntz 19303  df-oppg 19332  df-lsm 19621  df-cmn 19767  df-abl 19768  df-mgp 20105  df-rng 20117  df-ur 20146  df-srg 20151  df-ring 20199  df-cring 20200  df-oppr 20301  df-dvdsr 20324  df-unit 20325  df-irred 20326  df-invr 20355  df-dvr 20368  df-rhm 20439  df-nzr 20480  df-subrng 20513  df-subrg 20537  df-rlreg 20661  df-domn 20662  df-idom 20663  df-drng 20698  df-field 20699  df-sdrg 20755  df-lmod 20827  df-lss 20897  df-lsp 20937  df-lmhm 20988  df-lmim 20989  df-lmic 20990  df-lbs 21041  df-lvec 21069  df-sra 21139  df-rgmod 21140  df-lidl 21179  df-rsp 21180  df-2idl 21221  df-lpidl 21293  df-lpir 21294  df-pid 21308  df-cnfld 21326  df-dsmm 21705  df-frlm 21720  df-uvc 21756  df-lindf 21779  df-linds 21780  df-assa 21826  df-asp 21827  df-ascl 21828  df-psr 21882  df-mvr 21883  df-mpl 21884  df-opsr 21886  df-evls 22045  df-evl 22046  df-psr1 22128  df-vr1 22129  df-ply1 22130  df-coe1 22131  df-evls1 22266  df-evl1 22267  df-mdeg 26029  df-deg1 26030  df-mon1 26105  df-uc1p 26106  df-q1p 26107  df-r1p 26108  df-ig1p 26109  df-chn 32925  df-fldgen 33244  df-mxidl 33414  df-dim 33576  df-fldext 33619  df-extdg 33620  df-irng 33662  df-minply 33671  df-constr 33701
This theorem is referenced by:  2sqr3nconstr  33725
  Copyright terms: Public domain W3C validator