![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem19 | Structured version Visualization version GIF version |
Description: The 𝑁-th derivative of 𝐻 is 0 if 𝑁 is large enough. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem19.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
etransclem19.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
etransclem19.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
etransclem19.1 | ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
etransclem19.J | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
etransclem19.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
etransclem19.7 | ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) |
Ref | Expression |
---|---|
etransclem19 | ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem19.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | etransclem19.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
3 | etransclem19.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
4 | etransclem19.1 | . . 3 ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | |
5 | etransclem19.J | . . 3 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
6 | etransclem19.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
7 | 0red 11262 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
8 | 6 | zred 12720 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
9 | nnm1nn0 12565 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
10 | 3, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑃 − 1) ∈ ℕ0) |
11 | 10 | nn0red 12586 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 1) ∈ ℝ) |
12 | 3 | nnred 12279 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
13 | 11, 12 | ifcld 4577 | . . . . . 6 ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ) |
14 | 10 | nn0ge0d 12588 | . . . . . . . . 9 ⊢ (𝜑 → 0 ≤ (𝑃 − 1)) |
15 | 14 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐽 = 0) → 0 ≤ (𝑃 − 1)) |
16 | iftrue 4537 | . . . . . . . . . 10 ⊢ (𝐽 = 0 → if(𝐽 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1)) | |
17 | 16 | eqcomd 2741 | . . . . . . . . 9 ⊢ (𝐽 = 0 → (𝑃 − 1) = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
18 | 17 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐽 = 0) → (𝑃 − 1) = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
19 | 15, 18 | breqtrd 5174 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐽 = 0) → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
20 | 3 | nnnn0d 12585 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
21 | 20 | nn0ge0d 12588 | . . . . . . . . 9 ⊢ (𝜑 → 0 ≤ 𝑃) |
22 | 21 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐽 = 0) → 0 ≤ 𝑃) |
23 | iffalse 4540 | . . . . . . . . . 10 ⊢ (¬ 𝐽 = 0 → if(𝐽 = 0, (𝑃 − 1), 𝑃) = 𝑃) | |
24 | 23 | eqcomd 2741 | . . . . . . . . 9 ⊢ (¬ 𝐽 = 0 → 𝑃 = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
25 | 24 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑃 = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
26 | 22, 25 | breqtrd 5174 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐽 = 0) → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
27 | 19, 26 | pm2.61dan 813 | . . . . . 6 ⊢ (𝜑 → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
28 | etransclem19.7 | . . . . . 6 ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) | |
29 | 7, 13, 8, 27, 28 | lelttrd 11417 | . . . . 5 ⊢ (𝜑 → 0 < 𝑁) |
30 | 7, 8, 29 | ltled 11407 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑁) |
31 | elnn0z 12624 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | |
32 | 6, 30, 31 | sylanbrc 583 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
33 | 1, 2, 3, 4, 5, 32 | etransclem17 46207 | . 2 ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))) |
34 | 28 | iftrued 4539 | . . 3 ⊢ (𝜑 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = 0) |
35 | 34 | mpteq2dv 5250 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥 ∈ 𝑋 ↦ 0)) |
36 | 33, 35 | eqtrd 2775 | 1 ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ifcif 4531 {cpr 4633 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 < clt 11293 ≤ cle 11294 − cmin 11490 / cdiv 11918 ℕcn 12264 ℕ0cn0 12524 ℤcz 12611 ...cfz 13544 ↑cexp 14099 !cfa 14309 ↾t crest 17467 TopOpenctopn 17468 ℂfldccnfld 21382 D𝑛 cdvn 25914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-fac 14310 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-limc 25916 df-dv 25917 df-dvn 25918 |
This theorem is referenced by: etransclem32 46222 |
Copyright terms: Public domain | W3C validator |