Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem19 | Structured version Visualization version GIF version |
Description: The 𝑁-th derivative of 𝐻 is 0 if 𝑁 is large enough. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem19.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
etransclem19.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
etransclem19.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
etransclem19.1 | ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
etransclem19.J | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
etransclem19.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
etransclem19.7 | ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) |
Ref | Expression |
---|---|
etransclem19 | ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem19.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | etransclem19.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
3 | etransclem19.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
4 | etransclem19.1 | . . 3 ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | |
5 | etransclem19.J | . . 3 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
6 | etransclem19.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
7 | 0red 10909 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
8 | 6 | zred 12355 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
9 | nnm1nn0 12204 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
10 | 3, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑃 − 1) ∈ ℕ0) |
11 | 10 | nn0red 12224 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 1) ∈ ℝ) |
12 | 3 | nnred 11918 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
13 | 11, 12 | ifcld 4502 | . . . . . 6 ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ) |
14 | 10 | nn0ge0d 12226 | . . . . . . . . 9 ⊢ (𝜑 → 0 ≤ (𝑃 − 1)) |
15 | 14 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐽 = 0) → 0 ≤ (𝑃 − 1)) |
16 | iftrue 4462 | . . . . . . . . . 10 ⊢ (𝐽 = 0 → if(𝐽 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1)) | |
17 | 16 | eqcomd 2744 | . . . . . . . . 9 ⊢ (𝐽 = 0 → (𝑃 − 1) = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
18 | 17 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐽 = 0) → (𝑃 − 1) = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
19 | 15, 18 | breqtrd 5096 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐽 = 0) → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
20 | 3 | nnnn0d 12223 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
21 | 20 | nn0ge0d 12226 | . . . . . . . . 9 ⊢ (𝜑 → 0 ≤ 𝑃) |
22 | 21 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐽 = 0) → 0 ≤ 𝑃) |
23 | iffalse 4465 | . . . . . . . . . 10 ⊢ (¬ 𝐽 = 0 → if(𝐽 = 0, (𝑃 − 1), 𝑃) = 𝑃) | |
24 | 23 | eqcomd 2744 | . . . . . . . . 9 ⊢ (¬ 𝐽 = 0 → 𝑃 = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
25 | 24 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑃 = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
26 | 22, 25 | breqtrd 5096 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐽 = 0) → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
27 | 19, 26 | pm2.61dan 809 | . . . . . 6 ⊢ (𝜑 → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
28 | etransclem19.7 | . . . . . 6 ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) | |
29 | 7, 13, 8, 27, 28 | lelttrd 11063 | . . . . 5 ⊢ (𝜑 → 0 < 𝑁) |
30 | 7, 8, 29 | ltled 11053 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑁) |
31 | elnn0z 12262 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | |
32 | 6, 30, 31 | sylanbrc 582 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
33 | 1, 2, 3, 4, 5, 32 | etransclem17 43682 | . 2 ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))) |
34 | 28 | iftrued 4464 | . . 3 ⊢ (𝜑 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = 0) |
35 | 34 | mpteq2dv 5172 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥 ∈ 𝑋 ↦ 0)) |
36 | 33, 35 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ifcif 4456 {cpr 4560 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 · cmul 10807 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ...cfz 13168 ↑cexp 13710 !cfa 13915 ↾t crest 17048 TopOpenctopn 17049 ℂfldccnfld 20510 D𝑛 cdvn 24933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-fac 13916 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-dvn 24937 |
This theorem is referenced by: etransclem32 43697 |
Copyright terms: Public domain | W3C validator |