Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem19 Structured version   Visualization version   GIF version

Theorem etransclem19 43794
Description: The 𝑁-th derivative of 𝐻 is 0 if 𝑁 is large enough. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem19.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem19.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem19.p (𝜑𝑃 ∈ ℕ)
etransclem19.1 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem19.J (𝜑𝐽 ∈ (0...𝑀))
etransclem19.n (𝜑𝑁 ∈ ℤ)
etransclem19.7 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
Assertion
Ref Expression
etransclem19 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ 0))
Distinct variable groups:   𝑗,𝐽,𝑥   𝑗,𝑀,𝑥   𝑥,𝑁   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑗)   𝐻(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem etransclem19
StepHypRef Expression
1 etransclem19.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem19.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem19.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem19.1 . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
5 etransclem19.J . . 3 (𝜑𝐽 ∈ (0...𝑀))
6 etransclem19.n . . . 4 (𝜑𝑁 ∈ ℤ)
7 0red 10978 . . . . 5 (𝜑 → 0 ∈ ℝ)
86zred 12426 . . . . 5 (𝜑𝑁 ∈ ℝ)
9 nnm1nn0 12274 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
103, 9syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
1110nn0red 12294 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℝ)
123nnred 11988 . . . . . . 7 (𝜑𝑃 ∈ ℝ)
1311, 12ifcld 4505 . . . . . 6 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
1410nn0ge0d 12296 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑃 − 1))
1514adantr 481 . . . . . . . 8 ((𝜑𝐽 = 0) → 0 ≤ (𝑃 − 1))
16 iftrue 4465 . . . . . . . . . 10 (𝐽 = 0 → if(𝐽 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
1716eqcomd 2744 . . . . . . . . 9 (𝐽 = 0 → (𝑃 − 1) = if(𝐽 = 0, (𝑃 − 1), 𝑃))
1817adantl 482 . . . . . . . 8 ((𝜑𝐽 = 0) → (𝑃 − 1) = if(𝐽 = 0, (𝑃 − 1), 𝑃))
1915, 18breqtrd 5100 . . . . . . 7 ((𝜑𝐽 = 0) → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))
203nnnn0d 12293 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ0)
2120nn0ge0d 12296 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑃)
2221adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 0 ≤ 𝑃)
23 iffalse 4468 . . . . . . . . . 10 𝐽 = 0 → if(𝐽 = 0, (𝑃 − 1), 𝑃) = 𝑃)
2423eqcomd 2744 . . . . . . . . 9 𝐽 = 0 → 𝑃 = if(𝐽 = 0, (𝑃 − 1), 𝑃))
2524adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑃 = if(𝐽 = 0, (𝑃 − 1), 𝑃))
2622, 25breqtrd 5100 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))
2719, 26pm2.61dan 810 . . . . . 6 (𝜑 → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))
28 etransclem19.7 . . . . . 6 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
297, 13, 8, 27, 28lelttrd 11133 . . . . 5 (𝜑 → 0 < 𝑁)
307, 8, 29ltled 11123 . . . 4 (𝜑 → 0 ≤ 𝑁)
31 elnn0z 12332 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
326, 30, 31sylanbrc 583 . . 3 (𝜑𝑁 ∈ ℕ0)
331, 2, 3, 4, 5, 32etransclem17 43792 . 2 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
3428iftrued 4467 . . 3 (𝜑 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = 0)
3534mpteq2dv 5176 . 2 (𝜑 → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥𝑋 ↦ 0))
3633, 35eqtrd 2778 1 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  ifcif 4459  {cpr 4563   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  cexp 13782  !cfa 13987  t crest 17131  TopOpenctopn 17132  fldccnfld 20597   D𝑛 cdvn 25028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-dvn 25032
This theorem is referenced by:  etransclem32  43807
  Copyright terms: Public domain W3C validator