Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlathil | Structured version Visualization version GIF version |
Description: Construction of a Hilbert
space (df-hil 21018) 𝑈 from a Hilbert
lattice (df-hlat 37669) 𝐾, where 𝑊 is a fixed but arbitrary
hyperplane (co-atom) in 𝐾.
The Hilbert space 𝑈 is identical to the vector space ((DVecH‘𝐾)‘𝑊) (see dvhlvec 39428) except that it is extended with involution and inner product components. The construction of these two components is provided by Theorem 3.6 in [Holland95] p. 13, whose proof we follow loosely. An example of involution is the complex conjugate when the division ring is the field of complex numbers. The nature of the division ring we constructed is indeterminate, however, until we specialize the initial Hilbert lattice with additional conditions found by Maria Solèr in 1995 and refined by René Mayet in 1998 that result in a division ring isomorphic to ℂ. See additional discussion at https://us.metamath.org/qlegif/mmql.html#what 39428. 𝑊 corresponds to the w in the proof of Theorem 13.4 of [Crawley] p. 111. Such a 𝑊 always exists since HL has lattice rank of at least 4 by df-hil 21018. It can be eliminated if we just want to show the existence of a Hilbert space, as is done in the literature. (Contributed by NM, 23-Jun-2015.) |
Ref | Expression |
---|---|
hlhilphl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilphllem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilphl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hlathil | ⊢ (𝜑 → 𝑈 ∈ Hil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilphl.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hlhilphllem.u | . 2 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
3 | hlhilphl.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | eqid 2736 | . 2 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
5 | eqid 2736 | . 2 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
6 | eqid 2736 | . 2 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
7 | eqid 2736 | . 2 ⊢ (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊)) | |
8 | eqid 2736 | . 2 ⊢ ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) | |
9 | eqid 2736 | . 2 ⊢ (Scalar‘((DVecH‘𝐾)‘𝑊)) = (Scalar‘((DVecH‘𝐾)‘𝑊)) | |
10 | eqid 2736 | . 2 ⊢ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
11 | eqid 2736 | . 2 ⊢ (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
12 | eqid 2736 | . 2 ⊢ (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
13 | eqid 2736 | . 2 ⊢ (0g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (0g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
14 | eqid 2736 | . 2 ⊢ (0g‘((DVecH‘𝐾)‘𝑊)) = (0g‘((DVecH‘𝐾)‘𝑊)) | |
15 | eqid 2736 | . 2 ⊢ (·𝑖‘𝑈) = (·𝑖‘𝑈) | |
16 | eqid 2736 | . 2 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
17 | eqid 2736 | . 2 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
18 | eqid 2736 | . 2 ⊢ (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) | |
19 | eqid 2736 | . 2 ⊢ (ocv‘𝑈) = (ocv‘𝑈) | |
20 | eqid 2736 | . 2 ⊢ (ClSubSp‘𝑈) = (ClSubSp‘𝑈) | |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | hlhilhillem 40283 | 1 ⊢ (𝜑 → 𝑈 ∈ Hil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6480 ∈ cmpo 7340 Basecbs 17010 +gcplusg 17060 .rcmulr 17061 Scalarcsca 17063 ·𝑠 cvsca 17064 ·𝑖cip 17065 0gc0g 17248 ocvcocv 20972 ClSubSpccss 20973 Hilchil 21015 HLchlt 37668 LHypclh 38303 DVecHcdvh 39397 HDMapchdma 40111 HGMapchg 40202 HLHilchlh 40251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-riotaBAD 37271 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-om 7782 df-1st 7900 df-2nd 7901 df-tpos 8113 df-undef 8160 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-map 8689 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-n0 12336 df-z 12422 df-uz 12685 df-fz 13342 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-starv 17075 df-sca 17076 df-vsca 17077 df-ip 17078 df-0g 17250 df-mre 17393 df-mrc 17394 df-acs 17396 df-proset 18111 df-poset 18129 df-plt 18146 df-lub 18162 df-glb 18163 df-join 18164 df-meet 18165 df-p0 18241 df-p1 18242 df-lat 18248 df-clat 18315 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-subg 18849 df-ghm 18929 df-cntz 19020 df-oppg 19047 df-lsm 19338 df-pj1 19339 df-cmn 19484 df-abl 19485 df-mgp 19817 df-ur 19834 df-ring 19881 df-oppr 19958 df-dvdsr 19979 df-unit 19980 df-invr 20010 df-dvr 20021 df-rnghom 20055 df-drng 20096 df-subrg 20128 df-staf 20212 df-srng 20213 df-lmod 20232 df-lss 20301 df-lsp 20341 df-lmhm 20391 df-lvec 20472 df-sra 20541 df-rgmod 20542 df-phl 20938 df-ocv 20975 df-css 20976 df-pj 21017 df-hil 21018 df-lsatoms 37294 df-lshyp 37295 df-lcv 37337 df-lfl 37376 df-lkr 37404 df-ldual 37442 df-oposet 37494 df-ol 37496 df-oml 37497 df-covers 37584 df-ats 37585 df-atl 37616 df-cvlat 37640 df-hlat 37669 df-llines 37817 df-lplanes 37818 df-lvols 37819 df-lines 37820 df-psubsp 37822 df-pmap 37823 df-padd 38115 df-lhyp 38307 df-laut 38308 df-ldil 38423 df-ltrn 38424 df-trl 38478 df-tgrp 39062 df-tendo 39074 df-edring 39076 df-dveca 39322 df-disoa 39348 df-dvech 39398 df-dib 39458 df-dic 39492 df-dih 39548 df-doch 39667 df-djh 39714 df-lcdual 39906 df-mapd 39944 df-hvmap 40076 df-hdmap1 40112 df-hdmap 40113 df-hgmap 40203 df-hlhil 40252 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |