![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlathil | Structured version Visualization version GIF version |
Description: Construction of a Hilbert
space (df-hil 21724) 𝑈 from a Hilbert
lattice (df-hlat 39294) 𝐾, where 𝑊 is a fixed but arbitrary
hyperplane (co-atom) in 𝐾.
The Hilbert space 𝑈 is identical to the vector space ((DVecH‘𝐾)‘𝑊) (see dvhlvec 41053) except that it is extended with involution and inner product components. The construction of these two components is provided by Theorem 3.6 in [Holland95] p. 13, whose proof we follow loosely. An example of involution is the complex conjugate when the division ring is the field of complex numbers. The nature of the division ring we constructed is indeterminate, however, until we specialize the initial Hilbert lattice with additional conditions found by Maria Solèr in 1995 and refined by René Mayet in 1998 that result in a division ring isomorphic to ℂ. See additional discussion at https://us.metamath.org/qlegif/mmql.html#what 41053. 𝑊 corresponds to the w in the proof of Theorem 13.4 of [Crawley] p. 111. Such a 𝑊 always exists since HL has lattice rank of at least 4 by df-hil 21724. It can be eliminated if we just want to show the existence of a Hilbert space, as is done in the literature. (Contributed by NM, 23-Jun-2015.) |
Ref | Expression |
---|---|
hlhilphl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilphllem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilphl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hlathil | ⊢ (𝜑 → 𝑈 ∈ Hil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilphl.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hlhilphllem.u | . 2 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
3 | hlhilphl.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | eqid 2733 | . 2 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
5 | eqid 2733 | . 2 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
6 | eqid 2733 | . 2 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
7 | eqid 2733 | . 2 ⊢ (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊)) | |
8 | eqid 2733 | . 2 ⊢ ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) | |
9 | eqid 2733 | . 2 ⊢ (Scalar‘((DVecH‘𝐾)‘𝑊)) = (Scalar‘((DVecH‘𝐾)‘𝑊)) | |
10 | eqid 2733 | . 2 ⊢ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
11 | eqid 2733 | . 2 ⊢ (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
12 | eqid 2733 | . 2 ⊢ (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
13 | eqid 2733 | . 2 ⊢ (0g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (0g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
14 | eqid 2733 | . 2 ⊢ (0g‘((DVecH‘𝐾)‘𝑊)) = (0g‘((DVecH‘𝐾)‘𝑊)) | |
15 | eqid 2733 | . 2 ⊢ (·𝑖‘𝑈) = (·𝑖‘𝑈) | |
16 | eqid 2733 | . 2 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
17 | eqid 2733 | . 2 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
18 | eqid 2733 | . 2 ⊢ (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) | |
19 | eqid 2733 | . 2 ⊢ (ocv‘𝑈) = (ocv‘𝑈) | |
20 | eqid 2733 | . 2 ⊢ (ClSubSp‘𝑈) = (ClSubSp‘𝑈) | |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | hlhilhillem 41908 | 1 ⊢ (𝜑 → 𝑈 ∈ Hil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1535 ∈ wcel 2104 ‘cfv 6559 ∈ cmpo 7428 Basecbs 17235 +gcplusg 17288 .rcmulr 17289 Scalarcsca 17291 ·𝑠 cvsca 17292 ·𝑖cip 17293 0gc0g 17476 ocvcocv 21678 ClSubSpccss 21679 Hilchil 21721 HLchlt 39293 LHypclh 39928 DVecHcdvh 41022 HDMapchdma 41736 HGMapchg 41827 HLHilchlh 41876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7748 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-riotaBAD 38896 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6318 df-ord 6384 df-on 6385 df-lim 6386 df-suc 6387 df-iota 6511 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7882 df-1st 8008 df-2nd 8009 df-tpos 8245 df-undef 8292 df-frecs 8300 df-wrecs 8331 df-recs 8405 df-rdg 8444 df-1o 8500 df-2o 8501 df-er 8739 df-map 8862 df-en 8980 df-dom 8981 df-sdom 8982 df-fin 8983 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11486 df-neg 11487 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-n0 12519 df-z 12606 df-uz 12871 df-fz 13539 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17236 df-ress 17265 df-plusg 17301 df-mulr 17302 df-starv 17303 df-sca 17304 df-vsca 17305 df-ip 17306 df-0g 17478 df-mre 17621 df-mrc 17622 df-acs 17624 df-proset 18342 df-poset 18360 df-plt 18377 df-lub 18393 df-glb 18394 df-join 18395 df-meet 18396 df-p0 18472 df-p1 18473 df-lat 18479 df-clat 18546 df-mgm 18655 df-sgrp 18734 df-mnd 18750 df-mhm 18795 df-submnd 18796 df-grp 18953 df-minusg 18954 df-sbg 18955 df-subg 19140 df-ghm 19230 df-cntz 19334 df-oppg 19363 df-lsm 19655 df-pj1 19656 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20157 df-ur 20186 df-ring 20239 df-oppr 20337 df-dvdsr 20360 df-unit 20361 df-invr 20391 df-dvr 20404 df-rhm 20475 df-nzr 20516 df-subrg 20574 df-rlreg 20693 df-domn 20694 df-drng 20730 df-staf 20839 df-srng 20840 df-lmod 20859 df-lss 20930 df-lsp 20970 df-lmhm 21021 df-lvec 21102 df-sra 21172 df-rgmod 21173 df-phl 21644 df-ocv 21681 df-css 21682 df-pj 21723 df-hil 21724 df-lsatoms 38919 df-lshyp 38920 df-lcv 38962 df-lfl 39001 df-lkr 39029 df-ldual 39067 df-oposet 39119 df-ol 39121 df-oml 39122 df-covers 39209 df-ats 39210 df-atl 39241 df-cvlat 39265 df-hlat 39294 df-llines 39442 df-lplanes 39443 df-lvols 39444 df-lines 39445 df-psubsp 39447 df-pmap 39448 df-padd 39740 df-lhyp 39932 df-laut 39933 df-ldil 40048 df-ltrn 40049 df-trl 40103 df-tgrp 40687 df-tendo 40699 df-edring 40701 df-dveca 40947 df-disoa 40973 df-dvech 41023 df-dib 41083 df-dic 41117 df-dih 41173 df-doch 41292 df-djh 41339 df-lcdual 41531 df-mapd 41569 df-hvmap 41701 df-hdmap1 41737 df-hdmap 41738 df-hgmap 41828 df-hlhil 41877 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |