| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlathil | Structured version Visualization version GIF version | ||
| Description: Construction of a Hilbert
space (df-hil 21649) 𝑈 from a Hilbert
lattice (df-hlat 39290) 𝐾, where 𝑊 is a fixed but arbitrary
hyperplane (co-atom) in 𝐾.
The Hilbert space 𝑈 is identical to the vector space ((DVecH‘𝐾)‘𝑊) (see dvhlvec 41049) except that it is extended with involution and inner product components. The construction of these two components is provided by Theorem 3.6 in [Holland95] p. 13, whose proof we follow loosely. An example of involution is the complex conjugate when the division ring is the field of complex numbers. The nature of the division ring we constructed is indeterminate, however, until we specialize the initial Hilbert lattice with additional conditions found by Maria Solèr in 1995 and refined by René Mayet in 1998 that result in a division ring isomorphic to ℂ. See additional discussion at https://us.metamath.org/qlegif/mmql.html#what 41049. 𝑊 corresponds to the w in the proof of Theorem 13.4 of [Crawley] p. 111. Such a 𝑊 always exists since HL has lattice rank of at least 4 by df-hil 21649. It can be eliminated if we just want to show the existence of a Hilbert space, as is done in the literature. (Contributed by NM, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhilphl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhilphllem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhilphl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| hlathil | ⊢ (𝜑 → 𝑈 ∈ Hil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhilphl.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hlhilphllem.u | . 2 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 3 | hlhilphl.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | eqid 2734 | . 2 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 5 | eqid 2734 | . 2 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 6 | eqid 2734 | . 2 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
| 7 | eqid 2734 | . 2 ⊢ (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊)) | |
| 8 | eqid 2734 | . 2 ⊢ ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) | |
| 9 | eqid 2734 | . 2 ⊢ (Scalar‘((DVecH‘𝐾)‘𝑊)) = (Scalar‘((DVecH‘𝐾)‘𝑊)) | |
| 10 | eqid 2734 | . 2 ⊢ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
| 11 | eqid 2734 | . 2 ⊢ (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
| 12 | eqid 2734 | . 2 ⊢ (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
| 13 | eqid 2734 | . 2 ⊢ (0g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (0g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
| 14 | eqid 2734 | . 2 ⊢ (0g‘((DVecH‘𝐾)‘𝑊)) = (0g‘((DVecH‘𝐾)‘𝑊)) | |
| 15 | eqid 2734 | . 2 ⊢ (·𝑖‘𝑈) = (·𝑖‘𝑈) | |
| 16 | eqid 2734 | . 2 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
| 17 | eqid 2734 | . 2 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
| 18 | eqid 2734 | . 2 ⊢ (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) | |
| 19 | eqid 2734 | . 2 ⊢ (ocv‘𝑈) = (ocv‘𝑈) | |
| 20 | eqid 2734 | . 2 ⊢ (ClSubSp‘𝑈) = (ClSubSp‘𝑈) | |
| 21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | hlhilhillem 41900 | 1 ⊢ (𝜑 → 𝑈 ∈ Hil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6527 ∈ cmpo 7401 Basecbs 17213 +gcplusg 17256 .rcmulr 17257 Scalarcsca 17259 ·𝑠 cvsca 17260 ·𝑖cip 17261 0gc0g 17438 ocvcocv 21605 ClSubSpccss 21606 Hilchil 21646 HLchlt 39289 LHypclh 39924 DVecHcdvh 41018 HDMapchdma 41732 HGMapchg 41823 HLHilchlh 41872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-riotaBAD 38892 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-ot 4608 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-om 7856 df-1st 7982 df-2nd 7983 df-tpos 8219 df-undef 8266 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-n0 12494 df-z 12581 df-uz 12845 df-fz 13514 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-starv 17271 df-sca 17272 df-vsca 17273 df-ip 17274 df-0g 17440 df-mre 17583 df-mrc 17584 df-acs 17586 df-proset 18291 df-poset 18310 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18746 df-submnd 18747 df-grp 18904 df-minusg 18905 df-sbg 18906 df-subg 19091 df-ghm 19181 df-cntz 19285 df-oppg 19314 df-lsm 19602 df-pj1 19603 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-ring 20180 df-oppr 20282 df-dvdsr 20302 df-unit 20303 df-invr 20333 df-dvr 20346 df-rhm 20417 df-nzr 20458 df-subrg 20515 df-rlreg 20639 df-domn 20640 df-drng 20676 df-staf 20784 df-srng 20785 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lmhm 20965 df-lvec 21046 df-sra 21116 df-rgmod 21117 df-phl 21571 df-ocv 21608 df-css 21609 df-pj 21648 df-hil 21649 df-lsatoms 38915 df-lshyp 38916 df-lcv 38958 df-lfl 38997 df-lkr 39025 df-ldual 39063 df-oposet 39115 df-ol 39117 df-oml 39118 df-covers 39205 df-ats 39206 df-atl 39237 df-cvlat 39261 df-hlat 39290 df-llines 39438 df-lplanes 39439 df-lvols 39440 df-lines 39441 df-psubsp 39443 df-pmap 39444 df-padd 39736 df-lhyp 39928 df-laut 39929 df-ldil 40044 df-ltrn 40045 df-trl 40099 df-tgrp 40683 df-tendo 40695 df-edring 40697 df-dveca 40943 df-disoa 40969 df-dvech 41019 df-dib 41079 df-dic 41113 df-dih 41169 df-doch 41288 df-djh 41335 df-lcdual 41527 df-mapd 41565 df-hvmap 41697 df-hdmap1 41733 df-hdmap 41734 df-hgmap 41824 df-hlhil 41873 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |