![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlathil | Structured version Visualization version GIF version |
Description: Construction of a Hilbert
space (df-hil 21741) 𝑈 from a Hilbert
lattice (df-hlat 39299) 𝐾, where 𝑊 is a fixed but arbitrary
hyperplane (co-atom) in 𝐾.
The Hilbert space 𝑈 is identical to the vector space ((DVecH‘𝐾)‘𝑊) (see dvhlvec 41058) except that it is extended with involution and inner product components. The construction of these two components is provided by Theorem 3.6 in [Holland95] p. 13, whose proof we follow loosely. An example of involution is the complex conjugate when the division ring is the field of complex numbers. The nature of the division ring we constructed is indeterminate, however, until we specialize the initial Hilbert lattice with additional conditions found by Maria Solèr in 1995 and refined by René Mayet in 1998 that result in a division ring isomorphic to ℂ. See additional discussion at https://us.metamath.org/qlegif/mmql.html#what 41058. 𝑊 corresponds to the w in the proof of Theorem 13.4 of [Crawley] p. 111. Such a 𝑊 always exists since HL has lattice rank of at least 4 by df-hil 21741. It can be eliminated if we just want to show the existence of a Hilbert space, as is done in the literature. (Contributed by NM, 23-Jun-2015.) |
Ref | Expression |
---|---|
hlhilphl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilphllem.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilphl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hlathil | ⊢ (𝜑 → 𝑈 ∈ Hil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilphl.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hlhilphllem.u | . 2 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
3 | hlhilphl.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | eqid 2740 | . 2 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
5 | eqid 2740 | . 2 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
6 | eqid 2740 | . 2 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
7 | eqid 2740 | . 2 ⊢ (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊)) | |
8 | eqid 2740 | . 2 ⊢ ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) | |
9 | eqid 2740 | . 2 ⊢ (Scalar‘((DVecH‘𝐾)‘𝑊)) = (Scalar‘((DVecH‘𝐾)‘𝑊)) | |
10 | eqid 2740 | . 2 ⊢ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (Base‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
11 | eqid 2740 | . 2 ⊢ (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (+g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
12 | eqid 2740 | . 2 ⊢ (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (.r‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
13 | eqid 2740 | . 2 ⊢ (0g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) = (0g‘(Scalar‘((DVecH‘𝐾)‘𝑊))) | |
14 | eqid 2740 | . 2 ⊢ (0g‘((DVecH‘𝐾)‘𝑊)) = (0g‘((DVecH‘𝐾)‘𝑊)) | |
15 | eqid 2740 | . 2 ⊢ (·𝑖‘𝑈) = (·𝑖‘𝑈) | |
16 | eqid 2740 | . 2 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
17 | eqid 2740 | . 2 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
18 | eqid 2740 | . 2 ⊢ (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) | |
19 | eqid 2740 | . 2 ⊢ (ocv‘𝑈) = (ocv‘𝑈) | |
20 | eqid 2740 | . 2 ⊢ (ClSubSp‘𝑈) = (ClSubSp‘𝑈) | |
21 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | hlhilhillem 41913 | 1 ⊢ (𝜑 → 𝑈 ∈ Hil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6568 ∈ cmpo 7445 Basecbs 17252 +gcplusg 17305 .rcmulr 17306 Scalarcsca 17308 ·𝑠 cvsca 17309 ·𝑖cip 17310 0gc0g 17493 ocvcocv 21695 ClSubSpccss 21696 Hilchil 21738 HLchlt 39298 LHypclh 39933 DVecHcdvh 41027 HDMapchdma 41741 HGMapchg 41832 HLHilchlh 41881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-riotaBAD 38901 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-of 7708 df-om 7898 df-1st 8024 df-2nd 8025 df-tpos 8261 df-undef 8308 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-2o 8517 df-er 8757 df-map 8880 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-n0 12548 df-z 12634 df-uz 12898 df-fz 13562 df-struct 17188 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-mulr 17319 df-starv 17320 df-sca 17321 df-vsca 17322 df-ip 17323 df-0g 17495 df-mre 17638 df-mrc 17639 df-acs 17641 df-proset 18359 df-poset 18377 df-plt 18394 df-lub 18410 df-glb 18411 df-join 18412 df-meet 18413 df-p0 18489 df-p1 18490 df-lat 18496 df-clat 18563 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-mhm 18812 df-submnd 18813 df-grp 18970 df-minusg 18971 df-sbg 18972 df-subg 19157 df-ghm 19247 df-cntz 19351 df-oppg 19380 df-lsm 19672 df-pj1 19673 df-cmn 19818 df-abl 19819 df-mgp 20156 df-rng 20174 df-ur 20203 df-ring 20256 df-oppr 20354 df-dvdsr 20377 df-unit 20378 df-invr 20408 df-dvr 20421 df-rhm 20492 df-nzr 20533 df-subrg 20591 df-rlreg 20710 df-domn 20711 df-drng 20747 df-staf 20856 df-srng 20857 df-lmod 20876 df-lss 20947 df-lsp 20987 df-lmhm 21038 df-lvec 21119 df-sra 21189 df-rgmod 21190 df-phl 21661 df-ocv 21698 df-css 21699 df-pj 21740 df-hil 21741 df-lsatoms 38924 df-lshyp 38925 df-lcv 38967 df-lfl 39006 df-lkr 39034 df-ldual 39072 df-oposet 39124 df-ol 39126 df-oml 39127 df-covers 39214 df-ats 39215 df-atl 39246 df-cvlat 39270 df-hlat 39299 df-llines 39447 df-lplanes 39448 df-lvols 39449 df-lines 39450 df-psubsp 39452 df-pmap 39453 df-padd 39745 df-lhyp 39937 df-laut 39938 df-ldil 40053 df-ltrn 40054 df-trl 40108 df-tgrp 40692 df-tendo 40704 df-edring 40706 df-dveca 40952 df-disoa 40978 df-dvech 41028 df-dib 41088 df-dic 41122 df-dih 41178 df-doch 41297 df-djh 41344 df-lcdual 41536 df-mapd 41574 df-hvmap 41706 df-hdmap1 41742 df-hdmap 41743 df-hgmap 41833 df-hlhil 41882 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |