Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > pjhclii | Structured version Visualization version GIF version |
Description: Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjcli.1 | ⊢ 𝐻 ∈ Cℋ |
pjcli.2 | ⊢ 𝐴 ∈ ℋ |
Ref | Expression |
---|---|
pjhclii | ⊢ ((projℎ‘𝐻)‘𝐴) ∈ ℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjcli.2 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | pjcli.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
3 | 2 | pjhcli 29776 | . 2 ⊢ (𝐴 ∈ ℋ → ((projℎ‘𝐻)‘𝐴) ∈ ℋ) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ((projℎ‘𝐻)‘𝐴) ∈ ℋ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ‘cfv 6432 ℋchba 29277 Cℋ cch 29287 projℎcpjh 29295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cc 10192 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-addf 10951 ax-mulf 10952 ax-hilex 29357 ax-hfvadd 29358 ax-hvcom 29359 ax-hvass 29360 ax-hv0cl 29361 ax-hvaddid 29362 ax-hfvmul 29363 ax-hvmulid 29364 ax-hvmulass 29365 ax-hvdistr1 29366 ax-hvdistr2 29367 ax-hvmul0 29368 ax-hfi 29437 ax-his1 29440 ax-his2 29441 ax-his3 29442 ax-his4 29443 ax-hcompl 29560 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-oadd 8292 df-omul 8293 df-er 8481 df-map 8600 df-pm 8601 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fi 9148 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-acn 9701 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-n0 12234 df-z 12320 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-ico 13084 df-icc 13085 df-fz 13239 df-fl 13510 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-rlim 15196 df-rest 17131 df-topgen 17152 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-fbas 20592 df-fg 20593 df-top 22041 df-topon 22058 df-bases 22094 df-cld 22168 df-ntr 22169 df-cls 22170 df-nei 22247 df-lm 22378 df-haus 22464 df-fil 22995 df-fm 23087 df-flim 23088 df-flf 23089 df-cfil 24417 df-cau 24418 df-cmet 24419 df-grpo 28851 df-gid 28852 df-ginv 28853 df-gdiv 28854 df-ablo 28903 df-vc 28917 df-nv 28950 df-va 28953 df-ba 28954 df-sm 28955 df-0v 28956 df-vs 28957 df-nmcv 28958 df-ims 28959 df-ssp 29080 df-ph 29171 df-cbn 29221 df-hnorm 29326 df-hba 29327 df-hvsub 29329 df-hlim 29330 df-hcau 29331 df-sh 29565 df-ch 29579 df-oc 29610 df-ch0 29611 df-shs 29666 df-pjh 29753 |
This theorem is referenced by: pjoc1i 29789 pjchi 29790 spansnpji 29936 spanunsni 29937 spansnji 30004 pjidmi 30031 pjadjii 30032 pjaddii 30033 pjinormii 30034 pjmulii 30035 pjsubii 30036 pjsslem 30037 pjss2i 30038 pjssmii 30039 pjssge0ii 30040 pjdifnormii 30041 pjcji 30042 pjopythi 30077 pjnormi 30079 pjneli 30081 |
Copyright terms: Public domain | W3C validator |