| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjhclii | Structured version Visualization version GIF version | ||
| Description: Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjcli.1 | ⊢ 𝐻 ∈ Cℋ |
| pjcli.2 | ⊢ 𝐴 ∈ ℋ |
| Ref | Expression |
|---|---|
| pjhclii | ⊢ ((projℎ‘𝐻)‘𝐴) ∈ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjcli.2 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | pjcli.1 | . . 3 ⊢ 𝐻 ∈ Cℋ | |
| 3 | 2 | pjhcli 31390 | . 2 ⊢ (𝐴 ∈ ℋ → ((projℎ‘𝐻)‘𝐴) ∈ ℋ) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ((projℎ‘𝐻)‘𝐴) ∈ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ‘cfv 6476 ℋchba 30891 Cℋ cch 30901 projℎcpjh 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cc 10321 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 ax-mulf 11081 ax-hilex 30971 ax-hfvadd 30972 ax-hvcom 30973 ax-hvass 30974 ax-hv0cl 30975 ax-hvaddid 30976 ax-hfvmul 30977 ax-hvmulid 30978 ax-hvmulass 30979 ax-hvdistr1 30980 ax-hvdistr2 30981 ax-hvmul0 30982 ax-hfi 31051 ax-his1 31054 ax-his2 31055 ax-his3 31056 ax-his4 31057 ax-hcompl 31174 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-acn 9830 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ico 13246 df-icc 13247 df-fz 13403 df-fl 13691 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-rlim 15391 df-rest 17321 df-topgen 17342 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-top 22804 df-topon 22821 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lm 23139 df-haus 23225 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-cfil 25177 df-cau 25178 df-cmet 25179 df-grpo 30465 df-gid 30466 df-ginv 30467 df-gdiv 30468 df-ablo 30517 df-vc 30531 df-nv 30564 df-va 30567 df-ba 30568 df-sm 30569 df-0v 30570 df-vs 30571 df-nmcv 30572 df-ims 30573 df-ssp 30694 df-ph 30785 df-cbn 30835 df-hnorm 30940 df-hba 30941 df-hvsub 30943 df-hlim 30944 df-hcau 30945 df-sh 31179 df-ch 31193 df-oc 31224 df-ch0 31225 df-shs 31280 df-pjh 31367 |
| This theorem is referenced by: pjoc1i 31403 pjchi 31404 spansnpji 31550 spanunsni 31551 spansnji 31618 pjidmi 31645 pjadjii 31646 pjaddii 31647 pjinormii 31648 pjmulii 31649 pjsubii 31650 pjsslem 31651 pjss2i 31652 pjssmii 31653 pjssge0ii 31654 pjdifnormii 31655 pjcji 31656 pjopythi 31691 pjnormi 31693 pjneli 31695 |
| Copyright terms: Public domain | W3C validator |