Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1pid2OLD Structured version   Visualization version   GIF version

Theorem r1pid2OLD 33559
Description: Obsolete version of r1pid2 26087 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 2-Apr-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1pid2OLD.r (𝜑𝑅 ∈ IDomn)
r1pid2OLD.d 𝐷 = (deg1𝑅)
r1pid2OLD.p (𝜑𝐴𝑈)
r1pid2OLD.q (𝜑𝐵𝑁)
Assertion
Ref Expression
r1pid2OLD (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))

Proof of Theorem r1pid2OLD
StepHypRef Expression
1 r1pid2OLD.r . . . . . . . 8 (𝜑𝑅 ∈ IDomn)
21idomringd 20636 . . . . . . 7 (𝜑𝑅 ∈ Ring)
3 r1pid2OLD.p . . . . . . 7 (𝜑𝐴𝑈)
4 r1pid2OLD.q . . . . . . 7 (𝜑𝐵𝑁)
5 r1padd1.p . . . . . . . 8 𝑃 = (Poly1𝑅)
6 r1padd1.u . . . . . . . 8 𝑈 = (Base‘𝑃)
7 r1padd1.n . . . . . . . 8 𝑁 = (Unic1p𝑅)
8 eqid 2730 . . . . . . . 8 (quot1p𝑅) = (quot1p𝑅)
9 r1padd1.e . . . . . . . 8 𝐸 = (rem1p𝑅)
10 eqid 2730 . . . . . . . 8 (.r𝑃) = (.r𝑃)
11 eqid 2730 . . . . . . . 8 (+g𝑃) = (+g𝑃)
125, 6, 7, 8, 9, 10, 11r1pid 26086 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → 𝐴 = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
132, 3, 4, 12syl3anc 1373 . . . . . 6 (𝜑𝐴 = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
1413eqeq2d 2741 . . . . 5 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵))))
15 eqcom 2737 . . . . 5 ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵) ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
1614, 15bitr4di 289 . . . 4 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)))
17 eqid 2730 . . . . . 6 (0g𝑃) = (0g𝑃)
185ply1ring 22153 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
192, 18syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
2019ringgrpd 20153 . . . . . 6 (𝜑𝑃 ∈ Grp)
219, 5, 6, 7r1pcl 26084 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴𝐸𝐵) ∈ 𝑈)
222, 3, 4, 21syl3anc 1373 . . . . . 6 (𝜑 → (𝐴𝐸𝐵) ∈ 𝑈)
236, 11, 17, 20, 22grplidd 18874 . . . . 5 (𝜑 → ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))
2423eqeq2d 2741 . . . 4 (𝜑 → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)))
258, 5, 6, 7q1pcl 26082 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
262, 3, 4, 25syl3anc 1373 . . . . . 6 (𝜑 → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
275, 6, 7uc1pcl 26069 . . . . . . 7 (𝐵𝑁𝐵𝑈)
284, 27syl 17 . . . . . 6 (𝜑𝐵𝑈)
296, 10, 19, 26, 28ringcld 20171 . . . . 5 (𝜑 → ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) ∈ 𝑈)
306, 17ring0cl 20178 . . . . . 6 (𝑃 ∈ Ring → (0g𝑃) ∈ 𝑈)
312, 18, 303syl 18 . . . . 5 (𝜑 → (0g𝑃) ∈ 𝑈)
326, 11grprcan 18878 . . . . 5 ((𝑃 ∈ Grp ∧ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) ∈ 𝑈 ∧ (0g𝑃) ∈ 𝑈 ∧ (𝐴𝐸𝐵) ∈ 𝑈)) → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
3320, 29, 31, 22, 32syl13anc 1374 . . . 4 (𝜑 → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
3416, 24, 333bitr2d 307 . . 3 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
35 isidom 20633 . . . . . . . 8 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
361, 35sylib 218 . . . . . . 7 (𝜑 → (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3736simpld 494 . . . . . 6 (𝜑𝑅 ∈ CRing)
385ply1crng 22104 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
3937, 38syl 17 . . . . 5 (𝜑𝑃 ∈ CRing)
406, 10crngcom 20162 . . . . 5 ((𝑃 ∈ CRing ∧ 𝐵𝑈 ∧ (𝐴(quot1p𝑅)𝐵) ∈ 𝑈) → (𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵))
4139, 28, 26, 40syl3anc 1373 . . . 4 (𝜑 → (𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵))
4241eqeq1d 2732 . . 3 (𝜑 → ((𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = (0g𝑃) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
431idomdomd 20634 . . . . . 6 (𝜑𝑅 ∈ Domn)
445ply1domn 26049 . . . . . 6 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
4543, 44syl 17 . . . . 5 (𝜑𝑃 ∈ Domn)
465, 17, 7uc1pn0 26071 . . . . . 6 (𝐵𝑁𝐵 ≠ (0g𝑃))
474, 46syl 17 . . . . 5 (𝜑𝐵 ≠ (0g𝑃))
48 eqid 2730 . . . . . 6 (RLReg‘𝑃) = (RLReg‘𝑃)
496, 48, 17domnrrg 20621 . . . . 5 ((𝑃 ∈ Domn ∧ 𝐵𝑈𝐵 ≠ (0g𝑃)) → 𝐵 ∈ (RLReg‘𝑃))
5045, 28, 47, 49syl3anc 1373 . . . 4 (𝜑𝐵 ∈ (RLReg‘𝑃))
5148, 6, 10, 17rrgeq0 20608 . . . 4 ((𝑃 ∈ Ring ∧ 𝐵 ∈ (RLReg‘𝑃) ∧ (𝐴(quot1p𝑅)𝐵) ∈ 𝑈) → ((𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = (0g𝑃) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
5219, 50, 26, 51syl3anc 1373 . . 3 (𝜑 → ((𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = (0g𝑃) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
5334, 42, 523bitr2d 307 . 2 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
546, 10, 17, 19, 28ringlzd 20206 . . . . . . 7 (𝜑 → ((0g𝑃)(.r𝑃)𝐵) = (0g𝑃))
5554oveq2d 7357 . . . . . 6 (𝜑 → (𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵)) = (𝐴(-g𝑃)(0g𝑃)))
56 eqid 2730 . . . . . . . 8 (-g𝑃) = (-g𝑃)
576, 17, 56grpsubid1 18930 . . . . . . 7 ((𝑃 ∈ Grp ∧ 𝐴𝑈) → (𝐴(-g𝑃)(0g𝑃)) = 𝐴)
5820, 3, 57syl2anc 584 . . . . . 6 (𝜑 → (𝐴(-g𝑃)(0g𝑃)) = 𝐴)
5955, 58eqtr2d 2766 . . . . 5 (𝜑𝐴 = (𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵)))
6059fveq2d 6821 . . . 4 (𝜑 → (𝐷𝐴) = (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))))
6160breq1d 5099 . . 3 (𝜑 → ((𝐷𝐴) < (𝐷𝐵) ↔ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)))
6231biantrurd 532 . . 3 (𝜑 → ((𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵) ↔ ((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵))))
63 r1pid2OLD.d . . . . 5 𝐷 = (deg1𝑅)
648, 5, 6, 63, 56, 10, 7q1peqb 26081 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
652, 3, 4, 64syl3anc 1373 . . 3 (𝜑 → (((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
6661, 62, 653bitrd 305 . 2 (𝜑 → ((𝐷𝐴) < (𝐷𝐵) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
6753, 66bitr4d 282 1 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926   class class class wbr 5089  cfv 6477  (class class class)co 7341   < clt 11138  Basecbs 17112  +gcplusg 17153  .rcmulr 17154  0gc0g 17335  Grpcgrp 18838  -gcsg 18840  Ringcrg 20144  CRingccrg 20145  RLRegcrlreg 20599  Domncdomn 20600  IDomncidom 20601  Poly1cpl1 22082  deg1cdg1 25979  Unic1pcuc1p 26052  quot1pcq1p 26053  rem1pcr1p 26054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-nzr 20421  df-subrng 20454  df-subrg 20478  df-rlreg 20602  df-domn 20603  df-idom 20604  df-lmod 20788  df-lss 20858  df-cnfld 21285  df-ascl 21785  df-psr 21839  df-mvr 21840  df-mpl 21841  df-opsr 21843  df-psr1 22085  df-vr1 22086  df-ply1 22087  df-coe1 22088  df-mdeg 25980  df-deg1 25981  df-uc1p 26057  df-q1p 26058  df-r1p 26059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator