Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1pid2OLD Structured version   Visualization version   GIF version

Theorem r1pid2OLD 33576
Description: Obsolete version of r1pid2 26100 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 2-Apr-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1pid2OLD.r (𝜑𝑅 ∈ IDomn)
r1pid2OLD.d 𝐷 = (deg1𝑅)
r1pid2OLD.p (𝜑𝐴𝑈)
r1pid2OLD.q (𝜑𝐵𝑁)
Assertion
Ref Expression
r1pid2OLD (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))

Proof of Theorem r1pid2OLD
StepHypRef Expression
1 r1pid2OLD.r . . . . . . . 8 (𝜑𝑅 ∈ IDomn)
21idomringd 20649 . . . . . . 7 (𝜑𝑅 ∈ Ring)
3 r1pid2OLD.p . . . . . . 7 (𝜑𝐴𝑈)
4 r1pid2OLD.q . . . . . . 7 (𝜑𝐵𝑁)
5 r1padd1.p . . . . . . . 8 𝑃 = (Poly1𝑅)
6 r1padd1.u . . . . . . . 8 𝑈 = (Base‘𝑃)
7 r1padd1.n . . . . . . . 8 𝑁 = (Unic1p𝑅)
8 eqid 2731 . . . . . . . 8 (quot1p𝑅) = (quot1p𝑅)
9 r1padd1.e . . . . . . . 8 𝐸 = (rem1p𝑅)
10 eqid 2731 . . . . . . . 8 (.r𝑃) = (.r𝑃)
11 eqid 2731 . . . . . . . 8 (+g𝑃) = (+g𝑃)
125, 6, 7, 8, 9, 10, 11r1pid 26099 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → 𝐴 = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
132, 3, 4, 12syl3anc 1373 . . . . . 6 (𝜑𝐴 = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
1413eqeq2d 2742 . . . . 5 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵))))
15 eqcom 2738 . . . . 5 ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵) ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
1614, 15bitr4di 289 . . . 4 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)))
17 eqid 2731 . . . . . 6 (0g𝑃) = (0g𝑃)
185ply1ring 22166 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
192, 18syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
2019ringgrpd 20166 . . . . . 6 (𝜑𝑃 ∈ Grp)
219, 5, 6, 7r1pcl 26097 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴𝐸𝐵) ∈ 𝑈)
222, 3, 4, 21syl3anc 1373 . . . . . 6 (𝜑 → (𝐴𝐸𝐵) ∈ 𝑈)
236, 11, 17, 20, 22grplidd 18888 . . . . 5 (𝜑 → ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))
2423eqeq2d 2742 . . . 4 (𝜑 → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)))
258, 5, 6, 7q1pcl 26095 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
262, 3, 4, 25syl3anc 1373 . . . . . 6 (𝜑 → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
275, 6, 7uc1pcl 26082 . . . . . . 7 (𝐵𝑁𝐵𝑈)
284, 27syl 17 . . . . . 6 (𝜑𝐵𝑈)
296, 10, 19, 26, 28ringcld 20184 . . . . 5 (𝜑 → ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) ∈ 𝑈)
306, 17ring0cl 20191 . . . . . 6 (𝑃 ∈ Ring → (0g𝑃) ∈ 𝑈)
312, 18, 303syl 18 . . . . 5 (𝜑 → (0g𝑃) ∈ 𝑈)
326, 11grprcan 18892 . . . . 5 ((𝑃 ∈ Grp ∧ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) ∈ 𝑈 ∧ (0g𝑃) ∈ 𝑈 ∧ (𝐴𝐸𝐵) ∈ 𝑈)) → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
3320, 29, 31, 22, 32syl13anc 1374 . . . 4 (𝜑 → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
3416, 24, 333bitr2d 307 . . 3 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
35 isidom 20646 . . . . . . . 8 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
361, 35sylib 218 . . . . . . 7 (𝜑 → (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3736simpld 494 . . . . . 6 (𝜑𝑅 ∈ CRing)
385ply1crng 22117 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
3937, 38syl 17 . . . . 5 (𝜑𝑃 ∈ CRing)
406, 10crngcom 20175 . . . . 5 ((𝑃 ∈ CRing ∧ 𝐵𝑈 ∧ (𝐴(quot1p𝑅)𝐵) ∈ 𝑈) → (𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵))
4139, 28, 26, 40syl3anc 1373 . . . 4 (𝜑 → (𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵))
4241eqeq1d 2733 . . 3 (𝜑 → ((𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = (0g𝑃) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
431idomdomd 20647 . . . . . 6 (𝜑𝑅 ∈ Domn)
445ply1domn 26062 . . . . . 6 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
4543, 44syl 17 . . . . 5 (𝜑𝑃 ∈ Domn)
465, 17, 7uc1pn0 26084 . . . . . 6 (𝐵𝑁𝐵 ≠ (0g𝑃))
474, 46syl 17 . . . . 5 (𝜑𝐵 ≠ (0g𝑃))
48 eqid 2731 . . . . . 6 (RLReg‘𝑃) = (RLReg‘𝑃)
496, 48, 17domnrrg 20634 . . . . 5 ((𝑃 ∈ Domn ∧ 𝐵𝑈𝐵 ≠ (0g𝑃)) → 𝐵 ∈ (RLReg‘𝑃))
5045, 28, 47, 49syl3anc 1373 . . . 4 (𝜑𝐵 ∈ (RLReg‘𝑃))
5148, 6, 10, 17rrgeq0 20621 . . . 4 ((𝑃 ∈ Ring ∧ 𝐵 ∈ (RLReg‘𝑃) ∧ (𝐴(quot1p𝑅)𝐵) ∈ 𝑈) → ((𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = (0g𝑃) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
5219, 50, 26, 51syl3anc 1373 . . 3 (𝜑 → ((𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = (0g𝑃) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
5334, 42, 523bitr2d 307 . 2 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
546, 10, 17, 19, 28ringlzd 20219 . . . . . . 7 (𝜑 → ((0g𝑃)(.r𝑃)𝐵) = (0g𝑃))
5554oveq2d 7368 . . . . . 6 (𝜑 → (𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵)) = (𝐴(-g𝑃)(0g𝑃)))
56 eqid 2731 . . . . . . . 8 (-g𝑃) = (-g𝑃)
576, 17, 56grpsubid1 18944 . . . . . . 7 ((𝑃 ∈ Grp ∧ 𝐴𝑈) → (𝐴(-g𝑃)(0g𝑃)) = 𝐴)
5820, 3, 57syl2anc 584 . . . . . 6 (𝜑 → (𝐴(-g𝑃)(0g𝑃)) = 𝐴)
5955, 58eqtr2d 2767 . . . . 5 (𝜑𝐴 = (𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵)))
6059fveq2d 6832 . . . 4 (𝜑 → (𝐷𝐴) = (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))))
6160breq1d 5103 . . 3 (𝜑 → ((𝐷𝐴) < (𝐷𝐵) ↔ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)))
6231biantrurd 532 . . 3 (𝜑 → ((𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵) ↔ ((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵))))
63 r1pid2OLD.d . . . . 5 𝐷 = (deg1𝑅)
648, 5, 6, 63, 56, 10, 7q1peqb 26094 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
652, 3, 4, 64syl3anc 1373 . . 3 (𝜑 → (((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
6661, 62, 653bitrd 305 . 2 (𝜑 → ((𝐷𝐴) < (𝐷𝐵) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
6753, 66bitr4d 282 1 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5093  cfv 6487  (class class class)co 7352   < clt 11152  Basecbs 17126  +gcplusg 17167  .rcmulr 17168  0gc0g 17349  Grpcgrp 18852  -gcsg 18854  Ringcrg 20157  CRingccrg 20158  RLRegcrlreg 20612  Domncdomn 20613  IDomncidom 20614  Poly1cpl1 22095  deg1cdg1 25992  Unic1pcuc1p 26065  quot1pcq1p 26066  rem1pcr1p 26067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-addf 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-fz 13414  df-fzo 13561  df-seq 13915  df-hash 14244  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-hom 17191  df-cco 17192  df-0g 17351  df-gsum 17352  df-prds 17357  df-pws 17359  df-mre 17494  df-mrc 17495  df-acs 17497  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-submnd 18698  df-grp 18855  df-minusg 18856  df-sbg 18857  df-mulg 18987  df-subg 19042  df-ghm 19131  df-cntz 19235  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-nzr 20434  df-subrng 20467  df-subrg 20491  df-rlreg 20615  df-domn 20616  df-idom 20617  df-lmod 20801  df-lss 20871  df-cnfld 21298  df-ascl 21798  df-psr 21852  df-mvr 21853  df-mpl 21854  df-opsr 21856  df-psr1 22098  df-vr1 22099  df-ply1 22100  df-coe1 22101  df-mdeg 25993  df-deg1 25994  df-uc1p 26070  df-q1p 26071  df-r1p 26072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator