Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1pid2OLD Structured version   Visualization version   GIF version

Theorem r1pid2OLD 33623
Description: Obsolete version of r1pid2 26124 as of 21-Jun-2025. (Contributed by Thierry Arnoux, 2-Apr-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1pid2OLD.r (𝜑𝑅 ∈ IDomn)
r1pid2OLD.d 𝐷 = (deg1𝑅)
r1pid2OLD.p (𝜑𝐴𝑈)
r1pid2OLD.q (𝜑𝐵𝑁)
Assertion
Ref Expression
r1pid2OLD (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))

Proof of Theorem r1pid2OLD
StepHypRef Expression
1 r1pid2OLD.r . . . . . . . 8 (𝜑𝑅 ∈ IDomn)
21idomringd 20693 . . . . . . 7 (𝜑𝑅 ∈ Ring)
3 r1pid2OLD.p . . . . . . 7 (𝜑𝐴𝑈)
4 r1pid2OLD.q . . . . . . 7 (𝜑𝐵𝑁)
5 r1padd1.p . . . . . . . 8 𝑃 = (Poly1𝑅)
6 r1padd1.u . . . . . . . 8 𝑈 = (Base‘𝑃)
7 r1padd1.n . . . . . . . 8 𝑁 = (Unic1p𝑅)
8 eqid 2736 . . . . . . . 8 (quot1p𝑅) = (quot1p𝑅)
9 r1padd1.e . . . . . . . 8 𝐸 = (rem1p𝑅)
10 eqid 2736 . . . . . . . 8 (.r𝑃) = (.r𝑃)
11 eqid 2736 . . . . . . . 8 (+g𝑃) = (+g𝑃)
125, 6, 7, 8, 9, 10, 11r1pid 26123 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → 𝐴 = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
132, 3, 4, 12syl3anc 1373 . . . . . 6 (𝜑𝐴 = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
1413eqeq2d 2747 . . . . 5 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵))))
15 eqcom 2743 . . . . 5 ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵) ↔ (𝐴𝐸𝐵) = (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)))
1614, 15bitr4di 289 . . . 4 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)))
17 eqid 2736 . . . . . 6 (0g𝑃) = (0g𝑃)
185ply1ring 22188 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
192, 18syl 17 . . . . . . 7 (𝜑𝑃 ∈ Ring)
2019ringgrpd 20207 . . . . . 6 (𝜑𝑃 ∈ Grp)
219, 5, 6, 7r1pcl 26121 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴𝐸𝐵) ∈ 𝑈)
222, 3, 4, 21syl3anc 1373 . . . . . 6 (𝜑 → (𝐴𝐸𝐵) ∈ 𝑈)
236, 11, 17, 20, 22grplidd 18957 . . . . 5 (𝜑 → ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵))
2423eqeq2d 2747 . . . 4 (𝜑 → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = (𝐴𝐸𝐵)))
258, 5, 6, 7q1pcl 26119 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
262, 3, 4, 25syl3anc 1373 . . . . . 6 (𝜑 → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
275, 6, 7uc1pcl 26106 . . . . . . 7 (𝐵𝑁𝐵𝑈)
284, 27syl 17 . . . . . 6 (𝜑𝐵𝑈)
296, 10, 19, 26, 28ringcld 20225 . . . . 5 (𝜑 → ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) ∈ 𝑈)
306, 17ring0cl 20232 . . . . . 6 (𝑃 ∈ Ring → (0g𝑃) ∈ 𝑈)
312, 18, 303syl 18 . . . . 5 (𝜑 → (0g𝑃) ∈ 𝑈)
326, 11grprcan 18961 . . . . 5 ((𝑃 ∈ Grp ∧ (((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) ∈ 𝑈 ∧ (0g𝑃) ∈ 𝑈 ∧ (𝐴𝐸𝐵) ∈ 𝑈)) → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
3320, 29, 31, 22, 32syl13anc 1374 . . . 4 (𝜑 → ((((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵)(+g𝑃)(𝐴𝐸𝐵)) = ((0g𝑃)(+g𝑃)(𝐴𝐸𝐵)) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
3416, 24, 333bitr2d 307 . . 3 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
35 isidom 20690 . . . . . . . 8 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
361, 35sylib 218 . . . . . . 7 (𝜑 → (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
3736simpld 494 . . . . . 6 (𝜑𝑅 ∈ CRing)
385ply1crng 22139 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
3937, 38syl 17 . . . . 5 (𝜑𝑃 ∈ CRing)
406, 10crngcom 20216 . . . . 5 ((𝑃 ∈ CRing ∧ 𝐵𝑈 ∧ (𝐴(quot1p𝑅)𝐵) ∈ 𝑈) → (𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵))
4139, 28, 26, 40syl3anc 1373 . . . 4 (𝜑 → (𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵))
4241eqeq1d 2738 . . 3 (𝜑 → ((𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = (0g𝑃) ↔ ((𝐴(quot1p𝑅)𝐵)(.r𝑃)𝐵) = (0g𝑃)))
431idomdomd 20691 . . . . . 6 (𝜑𝑅 ∈ Domn)
445ply1domn 26086 . . . . . 6 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
4543, 44syl 17 . . . . 5 (𝜑𝑃 ∈ Domn)
465, 17, 7uc1pn0 26108 . . . . . 6 (𝐵𝑁𝐵 ≠ (0g𝑃))
474, 46syl 17 . . . . 5 (𝜑𝐵 ≠ (0g𝑃))
48 eqid 2736 . . . . . 6 (RLReg‘𝑃) = (RLReg‘𝑃)
496, 48, 17domnrrg 20678 . . . . 5 ((𝑃 ∈ Domn ∧ 𝐵𝑈𝐵 ≠ (0g𝑃)) → 𝐵 ∈ (RLReg‘𝑃))
5045, 28, 47, 49syl3anc 1373 . . . 4 (𝜑𝐵 ∈ (RLReg‘𝑃))
5148, 6, 10, 17rrgeq0 20665 . . . 4 ((𝑃 ∈ Ring ∧ 𝐵 ∈ (RLReg‘𝑃) ∧ (𝐴(quot1p𝑅)𝐵) ∈ 𝑈) → ((𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = (0g𝑃) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
5219, 50, 26, 51syl3anc 1373 . . 3 (𝜑 → ((𝐵(.r𝑃)(𝐴(quot1p𝑅)𝐵)) = (0g𝑃) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
5334, 42, 523bitr2d 307 . 2 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
546, 10, 17, 19, 28ringlzd 20260 . . . . . . 7 (𝜑 → ((0g𝑃)(.r𝑃)𝐵) = (0g𝑃))
5554oveq2d 7426 . . . . . 6 (𝜑 → (𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵)) = (𝐴(-g𝑃)(0g𝑃)))
56 eqid 2736 . . . . . . . 8 (-g𝑃) = (-g𝑃)
576, 17, 56grpsubid1 19013 . . . . . . 7 ((𝑃 ∈ Grp ∧ 𝐴𝑈) → (𝐴(-g𝑃)(0g𝑃)) = 𝐴)
5820, 3, 57syl2anc 584 . . . . . 6 (𝜑 → (𝐴(-g𝑃)(0g𝑃)) = 𝐴)
5955, 58eqtr2d 2772 . . . . 5 (𝜑𝐴 = (𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵)))
6059fveq2d 6885 . . . 4 (𝜑 → (𝐷𝐴) = (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))))
6160breq1d 5134 . . 3 (𝜑 → ((𝐷𝐴) < (𝐷𝐵) ↔ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)))
6231biantrurd 532 . . 3 (𝜑 → ((𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵) ↔ ((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵))))
63 r1pid2OLD.d . . . . 5 𝐷 = (deg1𝑅)
648, 5, 6, 63, 56, 10, 7q1peqb 26118 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
652, 3, 4, 64syl3anc 1373 . . 3 (𝜑 → (((0g𝑃) ∈ 𝑈 ∧ (𝐷‘(𝐴(-g𝑃)((0g𝑃)(.r𝑃)𝐵))) < (𝐷𝐵)) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
6661, 62, 653bitrd 305 . 2 (𝜑 → ((𝐷𝐴) < (𝐷𝐵) ↔ (𝐴(quot1p𝑅)𝐵) = (0g𝑃)))
6753, 66bitr4d 282 1 (𝜑 → ((𝐴𝐸𝐵) = 𝐴 ↔ (𝐷𝐴) < (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410   < clt 11274  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458  Grpcgrp 18921  -gcsg 18923  Ringcrg 20198  CRingccrg 20199  RLRegcrlreg 20656  Domncdomn 20657  IDomncidom 20658  Poly1cpl1 22117  deg1cdg1 26016  Unic1pcuc1p 26089  quot1pcq1p 26090  rem1pcr1p 26091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-rlreg 20659  df-domn 20660  df-idom 20661  df-lmod 20824  df-lss 20894  df-cnfld 21321  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-mdeg 26017  df-deg1 26018  df-uc1p 26094  df-q1p 26095  df-r1p 26096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator