Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdig Structured version   Visualization version   GIF version

Theorem nn0sumshdig 43425
Description: A nonnegative integer can be represented as sum of its shifted bits. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
nn0sumshdig (𝐴 ∈ ℕ0𝐴 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝐴) · (2↑𝑘)))
Distinct variable group:   𝐴,𝑘

Proof of Theorem nn0sumshdig
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 blennn0elnn 43379 . 2 (𝐴 ∈ ℕ0 → (#b𝐴) ∈ ℕ)
2 nn0sumshdiglem2 43424 . . 3 ((#b𝐴) ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (#b𝐴) → 𝑎 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
3 eqid 2777 . . . . 5 (#b𝐴) = (#b𝐴)
4 fveqeq2 6455 . . . . . . 7 (𝑎 = 𝐴 → ((#b𝑎) = (#b𝐴) ↔ (#b𝐴) = (#b𝐴)))
5 id 22 . . . . . . . 8 (𝑎 = 𝐴𝑎 = 𝐴)
6 oveq2 6930 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑘(digit‘2)𝑎) = (𝑘(digit‘2)𝐴))
76oveq1d 6937 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)𝐴) · (2↑𝑘)))
87adantr 474 . . . . . . . . 9 ((𝑎 = 𝐴𝑘 ∈ (0..^(#b𝐴))) → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((𝑘(digit‘2)𝐴) · (2↑𝑘)))
98sumeq2dv 14841 . . . . . . . 8 (𝑎 = 𝐴 → Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝐴) · (2↑𝑘)))
105, 9eqeq12d 2792 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝐴 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝐴) · (2↑𝑘))))
114, 10imbi12d 336 . . . . . 6 (𝑎 = 𝐴 → (((#b𝑎) = (#b𝐴) → 𝑎 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝐴) = (#b𝐴) → 𝐴 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝐴) · (2↑𝑘)))))
1211rspcva 3508 . . . . 5 ((𝐴 ∈ ℕ0 ∧ ∀𝑎 ∈ ℕ0 ((#b𝑎) = (#b𝐴) → 𝑎 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝑎) · (2↑𝑘)))) → ((#b𝐴) = (#b𝐴) → 𝐴 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝐴) · (2↑𝑘))))
133, 12mpi 20 . . . 4 ((𝐴 ∈ ℕ0 ∧ ∀𝑎 ∈ ℕ0 ((#b𝑎) = (#b𝐴) → 𝑎 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝑎) · (2↑𝑘)))) → 𝐴 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝐴) · (2↑𝑘)))
1413ex 403 . . 3 (𝐴 ∈ ℕ0 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = (#b𝐴) → 𝑎 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝑎) · (2↑𝑘))) → 𝐴 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝐴) · (2↑𝑘))))
152, 14syl5 34 . 2 (𝐴 ∈ ℕ0 → ((#b𝐴) ∈ ℕ → 𝐴 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝐴) · (2↑𝑘))))
161, 15mpd 15 1 (𝐴 ∈ ℕ0𝐴 = Σ𝑘 ∈ (0..^(#b𝐴))((𝑘(digit‘2)𝐴) · (2↑𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  wral 3089  cfv 6135  (class class class)co 6922  0cc0 10272   · cmul 10277  cn 11374  2c2 11430  0cn0 11642  ..^cfzo 12784  cexp 13178  Σcsu 14824  #bcblen 43371  digitcdig 43397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-dvds 15388  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-cxp 24741  df-logb 24943  df-blen 43372  df-dig 43398
This theorem is referenced by:  nn0mullong  43427
  Copyright terms: Public domain W3C validator