HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem9 Structured version   Visualization version   GIF version

Theorem cnlnadjlem9 29458
Description: Lemma for cnlnadji 29459. 𝐹 provides an example showing the existence of a continuous linear adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1 𝑇 ∈ LinOp
cnlnadjlem.2 𝑇 ∈ ContOp
cnlnadjlem.3 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
cnlnadjlem.4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
cnlnadjlem.5 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
Assertion
Ref Expression
cnlnadjlem9 𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))
Distinct variable groups:   𝑣,𝑔,𝑤,𝑦,𝑧   𝑧,𝐵   𝑤,𝑡,𝑥,𝑧,𝐹   𝑡,𝑔,𝑥,𝑇,𝑣,𝑦,𝑤,𝑧   𝑣,𝐺,𝑤,𝑥,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑤,𝑣,𝑡,𝑔)   𝐹(𝑦,𝑣,𝑔)   𝐺(𝑦,𝑡,𝑔)

Proof of Theorem cnlnadjlem9
StepHypRef Expression
1 cnlnadjlem.1 . . . 4 𝑇 ∈ LinOp
2 cnlnadjlem.2 . . . 4 𝑇 ∈ ContOp
3 cnlnadjlem.3 . . . 4 𝐺 = (𝑔 ∈ ℋ ↦ ((𝑇𝑔) ·ih 𝑦))
4 cnlnadjlem.4 . . . 4 𝐵 = (𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇𝑣) ·ih 𝑦) = (𝑣 ·ih 𝑤))
5 cnlnadjlem.5 . . . 4 𝐹 = (𝑦 ∈ ℋ ↦ 𝐵)
61, 2, 3, 4, 5cnlnadjlem6 29455 . . 3 𝐹 ∈ LinOp
71, 2, 3, 4, 5cnlnadjlem8 29457 . . 3 𝐹 ∈ ContOp
8 elin 3995 . . 3 (𝐹 ∈ (LinOp ∩ ContOp) ↔ (𝐹 ∈ LinOp ∧ 𝐹 ∈ ContOp))
96, 7, 8mpbir2an 703 . 2 𝐹 ∈ (LinOp ∩ ContOp)
101, 2, 3, 4, 5cnlnadjlem5 29454 . . . 4 ((𝑧 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝐹𝑧)))
1110ancoms 451 . . 3 ((𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝐹𝑧)))
1211rgen2a 3159 . 2 𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝐹𝑧))
13 fveq1 6411 . . . . . 6 (𝑡 = 𝐹 → (𝑡𝑧) = (𝐹𝑧))
1413oveq2d 6895 . . . . 5 (𝑡 = 𝐹 → (𝑥 ·ih (𝑡𝑧)) = (𝑥 ·ih (𝐹𝑧)))
1514eqeq2d 2810 . . . 4 (𝑡 = 𝐹 → (((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) ↔ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝐹𝑧))))
16152ralbidv 3171 . . 3 (𝑡 = 𝐹 → (∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)) ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝐹𝑧))))
1716rspcev 3498 . 2 ((𝐹 ∈ (LinOp ∩ ContOp) ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝐹𝑧))) → ∃𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧)))
189, 12, 17mp2an 684 1 𝑡 ∈ (LinOp ∩ ContOp)∀𝑥 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑇𝑥) ·ih 𝑧) = (𝑥 ·ih (𝑡𝑧))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  wcel 2157  wral 3090  wrex 3091  cin 3769  cmpt 4923  cfv 6102  crio 6839  (class class class)co 6879  chba 28300   ·ih csp 28303  ContOpccop 28327  LinOpclo 28328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-inf2 8789  ax-cc 9546  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303  ax-addf 10304  ax-mulf 10305  ax-hilex 28380  ax-hfvadd 28381  ax-hvcom 28382  ax-hvass 28383  ax-hv0cl 28384  ax-hvaddid 28385  ax-hfvmul 28386  ax-hvmulid 28387  ax-hvmulass 28388  ax-hvdistr1 28389  ax-hvdistr2 28390  ax-hvmul0 28391  ax-hfi 28460  ax-his1 28463  ax-his2 28464  ax-his3 28465  ax-his4 28466  ax-hcompl 28583
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-iin 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-of 7132  df-om 7301  df-1st 7402  df-2nd 7403  df-supp 7534  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-2o 7801  df-oadd 7804  df-omul 7805  df-er 7983  df-map 8098  df-pm 8099  df-ixp 8150  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-fsupp 8519  df-fi 8560  df-sup 8591  df-inf 8592  df-oi 8658  df-card 9052  df-acn 9055  df-cda 9279  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11580  df-z 11666  df-dec 11783  df-uz 11930  df-q 12033  df-rp 12074  df-xneg 12192  df-xadd 12193  df-xmul 12194  df-ioo 12427  df-ico 12429  df-icc 12430  df-fz 12580  df-fzo 12720  df-fl 12847  df-seq 13055  df-exp 13114  df-hash 13370  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-clim 14559  df-rlim 14560  df-sum 14757  df-struct 16185  df-ndx 16186  df-slot 16187  df-base 16189  df-sets 16190  df-ress 16191  df-plusg 16279  df-mulr 16280  df-starv 16281  df-sca 16282  df-vsca 16283  df-ip 16284  df-tset 16285  df-ple 16286  df-ds 16288  df-unif 16289  df-hom 16290  df-cco 16291  df-rest 16397  df-topn 16398  df-0g 16416  df-gsum 16417  df-topgen 16418  df-pt 16419  df-prds 16422  df-xrs 16476  df-qtop 16481  df-imas 16482  df-xps 16484  df-mre 16560  df-mrc 16561  df-acs 16563  df-mgm 17556  df-sgrp 17598  df-mnd 17609  df-submnd 17650  df-mulg 17856  df-cntz 18061  df-cmn 18509  df-psmet 20059  df-xmet 20060  df-met 20061  df-bl 20062  df-mopn 20063  df-fbas 20064  df-fg 20065  df-cnfld 20068  df-top 21026  df-topon 21043  df-topsp 21065  df-bases 21078  df-cld 21151  df-ntr 21152  df-cls 21153  df-nei 21230  df-cn 21359  df-cnp 21360  df-lm 21361  df-t1 21446  df-haus 21447  df-tx 21693  df-hmeo 21886  df-fil 21977  df-fm 22069  df-flim 22070  df-flf 22071  df-xms 22452  df-ms 22453  df-tms 22454  df-cfil 23380  df-cau 23381  df-cmet 23382  df-grpo 27872  df-gid 27873  df-ginv 27874  df-gdiv 27875  df-ablo 27924  df-vc 27938  df-nv 27971  df-va 27974  df-ba 27975  df-sm 27976  df-0v 27977  df-vs 27978  df-nmcv 27979  df-ims 27980  df-dip 28080  df-ssp 28101  df-ph 28192  df-cbn 28243  df-hnorm 28349  df-hba 28350  df-hvsub 28352  df-hlim 28353  df-hcau 28354  df-sh 28588  df-ch 28602  df-oc 28633  df-ch0 28634  df-nmop 29222  df-cnop 29223  df-lnop 29224  df-unop 29226  df-nmfn 29228  df-nlfn 29229  df-cnfn 29230  df-lnfn 29231
This theorem is referenced by:  cnlnadji  29459
  Copyright terms: Public domain W3C validator