Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relogbexpd Structured version   Visualization version   GIF version

Theorem relogbexpd 40708
Description: Identity law for general logarithm: the logarithm of a power to the base is the exponent, a deduction version. (Contributed by metakunt, 22-May-2024.)
Hypotheses
Ref Expression
relogbexpd.1 (𝜑𝐵 ∈ ℝ+)
relogbexpd.2 (𝜑𝐵 ≠ 1)
relogbexpd.3 (𝜑𝑀 ∈ ℤ)
Assertion
Ref Expression
relogbexpd (𝜑 → (𝐵 logb (𝐵𝑀)) = 𝑀)

Proof of Theorem relogbexpd
StepHypRef Expression
1 relogbexpd.1 . . 3 (𝜑𝐵 ∈ ℝ+)
2 relogbexpd.2 . . 3 (𝜑𝐵 ≠ 1)
3 relogbexpd.3 . . 3 (𝜑𝑀 ∈ ℤ)
41, 2, 33jca 1128 . 2 (𝜑 → (𝐵 ∈ ℝ+𝐵 ≠ 1 ∧ 𝑀 ∈ ℤ))
5 relogbexp 26214 . 2 ((𝐵 ∈ ℝ+𝐵 ≠ 1 ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵𝑀)) = 𝑀)
64, 5syl 17 1 (𝜑 → (𝐵 logb (𝐵𝑀)) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wne 2940  (class class class)co 7394  1c1 11095  cz 12542  +crp 12958  cexp 14011   logb clogb 26198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-inf2 9620  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-pre-sup 11172  ax-addf 11173  ax-mulf 11174
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-om 7840  df-1st 7959  df-2nd 7960  df-supp 8131  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-2o 8451  df-er 8688  df-map 8807  df-pm 8808  df-ixp 8877  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-fsupp 9347  df-fi 9390  df-sup 9421  df-inf 9422  df-oi 9489  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-7 12264  df-8 12265  df-9 12266  df-n0 12457  df-z 12543  df-dec 12662  df-uz 12807  df-q 12917  df-rp 12959  df-xneg 13076  df-xadd 13077  df-xmul 13078  df-ioo 13312  df-ioc 13313  df-ico 13314  df-icc 13315  df-fz 13469  df-fzo 13612  df-fl 13741  df-mod 13819  df-seq 13951  df-exp 14012  df-fac 14218  df-bc 14247  df-hash 14275  df-shft 14998  df-cj 15030  df-re 15031  df-im 15032  df-sqrt 15166  df-abs 15167  df-limsup 15399  df-clim 15416  df-rlim 15417  df-sum 15617  df-ef 15995  df-sin 15997  df-cos 15998  df-pi 16000  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-mulr 17195  df-starv 17196  df-sca 17197  df-vsca 17198  df-ip 17199  df-tset 17200  df-ple 17201  df-ds 17203  df-unif 17204  df-hom 17205  df-cco 17206  df-rest 17352  df-topn 17353  df-0g 17371  df-gsum 17372  df-topgen 17373  df-pt 17374  df-prds 17377  df-xrs 17432  df-qtop 17437  df-imas 17438  df-xps 17440  df-mre 17514  df-mrc 17515  df-acs 17517  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-submnd 18650  df-mulg 18925  df-cntz 19149  df-cmn 19616  df-psmet 20872  df-xmet 20873  df-met 20874  df-bl 20875  df-mopn 20876  df-fbas 20877  df-fg 20878  df-cnfld 20881  df-top 22327  df-topon 22344  df-topsp 22366  df-bases 22380  df-cld 22454  df-ntr 22455  df-cls 22456  df-nei 22533  df-lp 22571  df-perf 22572  df-cn 22662  df-cnp 22663  df-haus 22750  df-tx 22997  df-hmeo 23190  df-fil 23281  df-fm 23373  df-flim 23374  df-flf 23375  df-xms 23757  df-ms 23758  df-tms 23759  df-cncf 24325  df-limc 25314  df-dv 25315  df-log 25996  df-cxp 25997  df-logb 26199
This theorem is referenced by:  3lexlogpow5ineq2  40789  3lexlogpow2ineq1  40792  aks4d1p1p7  40808  aks4d1p1p5  40809  aks4d1p1  40810
  Copyright terms: Public domain W3C validator