MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  picn Structured version   Visualization version   GIF version

Theorem picn 26367
Description: π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.)
Assertion
Ref Expression
picn π ∈ ℂ

Proof of Theorem picn
StepHypRef Expression
1 pire 26366 . 2 π ∈ ℝ
21recni 11188 1 π ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cc 11066  πcpi 16032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  negpicn  26371  pidiv2halves  26376  efhalfpi  26380  cospi  26381  efipi  26382  sin2pi  26384  cos2pi  26385  ef2pi  26386  ef2kpi  26387  efper  26388  sinperlem  26389  sin2kpi  26392  cos2kpi  26393  sin2pim  26394  cos2pim  26395  sinmpi  26396  cosmpi  26397  sinppi  26398  cosppi  26399  efimpi  26400  ptolemy  26405  sinq12gt0  26416  sinq34lt0t  26418  cosq14gt0  26419  cosq14ge0  26420  sincosq1eq  26421  tan4thpi  26423  sincos6thpi  26425  sincos3rdpi  26426  abssinper  26430  sinkpi  26431  coskpi  26432  sineq0  26433  coseq1  26434  efeq1  26437  cosne0  26438  resinf1o  26445  eff1o  26458  logi  26496  logneg  26497  logm1  26498  eflogeq  26511  argimgt0  26521  logneg2  26524  logf1o2  26559  cxpsqrt  26612  abscxpbnd  26663  root1eq1  26665  cxpeq  26667  ang180lem1  26719  ang180lem2  26720  ang180lem3  26721  ang180lem4  26722  acosf  26784  acosneg  26797  acoscos  26803  acos1  26805  sinacos  26815  atanlogsublem  26825  atanlogsub  26826  atantan  26833  atanbndlem  26835  basellem1  26991  cos9thpiminplylem3  33774  cos9thpiminplylem4  33775  cos9thpiminplylem5  33776  cos9thpiminply  33778  cos9thpinconstrlem1  33779  cos9thpinconstrlem2  33780  cos9thpinconstr  33781  efmul2picn  34587  itgexpif  34597  vtscl  34629  vtsprod  34630  circlemeth  34631  cos2h  37605  tan2h  37606  areacirc  37707  ef11d  42327  cxp112d  42329  cxp111d  42330  cxpi11d  42331  tanhalfpim  42337  sinpim  42338  cospim  42339  tan3rdpi  42340  sin2t3rdpi  42341  cos2t3rdpi  42342  sin4t3rdpi  42343  cos4t3rdpi  42344  acos1half  42346  proot1ex  43185  coseq0  45862  coskpi2  45864  cosnegpi  45865  sinaover2ne0  45866  cosknegpi  45867  itgsinexplem1  45952  wallispilem4  46066  wallispi  46068  stirlinglem15  46086  dirker2re  46090  dirkerdenne0  46091  dirkerper  46094  dirkertrigeqlem1  46096  dirkertrigeqlem2  46097  dirkertrigeqlem3  46098  dirkertrigeq  46099  dirkeritg  46100  dirkercncflem1  46101  dirkercncflem2  46102  fourierdlem62  46166  fourierdlem66  46170  fourierdlem94  46198  fourierdlem95  46199  fourierdlem101  46205  fourierdlem102  46206  fourierdlem103  46207  fourierdlem111  46215  fourierdlem112  46216  fourierdlem113  46217  fourierdlem114  46218  sqwvfoura  46226  sqwvfourb  46227  fourierswlem  46228  fouriersw  46229  tannpoly  46891  sinnpoly  46892
  Copyright terms: Public domain W3C validator