MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  picn Structured version   Visualization version   GIF version

Theorem picn 25052
Description: π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.)
Assertion
Ref Expression
picn π ∈ ℂ

Proof of Theorem picn
StepHypRef Expression
1 pire 25051 . 2 π ∈ ℝ
21recni 10644 1 π ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  cc 10524  πcpi 15412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  negpicn  25055  pidiv2halves  25060  efhalfpi  25064  cospi  25065  efipi  25066  sin2pi  25068  cos2pi  25069  ef2pi  25070  ef2kpi  25071  efper  25072  sinperlem  25073  sin2kpi  25076  cos2kpi  25077  sin2pim  25078  cos2pim  25079  sinmpi  25080  cosmpi  25081  sinppi  25082  cosppi  25083  efimpi  25084  ptolemy  25089  sinq12gt0  25100  sinq34lt0t  25102  cosq14gt0  25103  cosq14ge0  25104  sincosq1eq  25105  sincos6thpi  25108  sincos3rdpi  25109  abssinper  25113  sinkpi  25114  coskpi  25115  sineq0  25116  coseq1  25117  efeq1  25120  cosne0  25121  resinf1o  25128  eff1o  25141  logneg  25179  logm1  25180  eflogeq  25193  argimgt0  25203  logneg2  25206  logf1o2  25241  cxpsqrt  25294  abscxpbnd  25342  root1eq1  25344  cxpeq  25346  ang180lem1  25395  ang180lem2  25396  ang180lem3  25397  ang180lem4  25398  acosf  25460  acosneg  25473  acoscos  25479  acos1  25481  sinacos  25491  atanlogsublem  25501  atanlogsub  25502  atantan  25509  atanbndlem  25511  basellem1  25666  efmul2picn  31977  itgexpif  31987  vtscl  32019  vtsprod  32020  circlemeth  32021  logi  33076  cos2h  35045  tan2h  35046  areacirc  35147  proot1ex  40140  coseq0  42501  coskpi2  42503  cosnegpi  42504  sinaover2ne0  42505  cosknegpi  42506  itgsinexplem1  42591  wallispilem4  42705  wallispi  42707  stirlinglem15  42725  dirker2re  42729  dirkerdenne0  42730  dirkerper  42733  dirkertrigeqlem1  42735  dirkertrigeqlem2  42736  dirkertrigeqlem3  42737  dirkertrigeq  42738  dirkeritg  42739  dirkercncflem1  42740  dirkercncflem2  42741  fourierdlem62  42805  fourierdlem66  42809  fourierdlem94  42837  fourierdlem95  42838  fourierdlem101  42844  fourierdlem102  42845  fourierdlem103  42846  fourierdlem111  42854  fourierdlem112  42855  fourierdlem113  42856  fourierdlem114  42857  sqwvfoura  42865  sqwvfourb  42866  fourierswlem  42867  fouriersw  42868
  Copyright terms: Public domain W3C validator