![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > picn | Structured version Visualization version GIF version |
Description: π is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.) |
Ref | Expression |
---|---|
picn | ⊢ π ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pire 25720 | . 2 ⊢ π ∈ ℝ | |
2 | 1 | recni 11094 | 1 ⊢ π ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ℂcc 10974 πcpi 15875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-inf2 9502 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 ax-addf 11055 ax-mulf 11056 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7599 df-om 7785 df-1st 7903 df-2nd 7904 df-supp 8052 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-2o 8372 df-er 8573 df-map 8692 df-pm 8693 df-ixp 8761 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fsupp 9231 df-fi 9272 df-sup 9303 df-inf 9304 df-oi 9371 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-q 12794 df-rp 12836 df-xneg 12953 df-xadd 12954 df-xmul 12955 df-ioo 13188 df-ioc 13189 df-ico 13190 df-icc 13191 df-fz 13345 df-fzo 13488 df-fl 13617 df-seq 13827 df-exp 13888 df-fac 14093 df-bc 14122 df-hash 14150 df-shft 14877 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-limsup 15279 df-clim 15296 df-rlim 15297 df-sum 15497 df-ef 15876 df-sin 15878 df-cos 15879 df-pi 15881 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-xrs 17310 df-qtop 17315 df-imas 17316 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-mulg 18797 df-cntz 19019 df-cmn 19483 df-psmet 20694 df-xmet 20695 df-met 20696 df-bl 20697 df-mopn 20698 df-fbas 20699 df-fg 20700 df-cnfld 20703 df-top 22148 df-topon 22165 df-topsp 22187 df-bases 22201 df-cld 22275 df-ntr 22276 df-cls 22277 df-nei 22354 df-lp 22392 df-perf 22393 df-cn 22483 df-cnp 22484 df-haus 22571 df-tx 22818 df-hmeo 23011 df-fil 23102 df-fm 23194 df-flim 23195 df-flf 23196 df-xms 23578 df-ms 23579 df-tms 23580 df-cncf 24146 df-limc 25135 df-dv 25136 |
This theorem is referenced by: negpicn 25724 pidiv2halves 25729 efhalfpi 25733 cospi 25734 efipi 25735 sin2pi 25737 cos2pi 25738 ef2pi 25739 ef2kpi 25740 efper 25741 sinperlem 25742 sin2kpi 25745 cos2kpi 25746 sin2pim 25747 cos2pim 25748 sinmpi 25749 cosmpi 25750 sinppi 25751 cosppi 25752 efimpi 25753 ptolemy 25758 sinq12gt0 25769 sinq34lt0t 25771 cosq14gt0 25772 cosq14ge0 25773 sincosq1eq 25774 sincos6thpi 25777 sincos3rdpi 25778 abssinper 25782 sinkpi 25783 coskpi 25784 sineq0 25785 coseq1 25786 efeq1 25789 cosne0 25790 resinf1o 25797 eff1o 25810 logneg 25848 logm1 25849 eflogeq 25862 argimgt0 25872 logneg2 25875 logf1o2 25910 cxpsqrt 25963 abscxpbnd 26011 root1eq1 26013 cxpeq 26015 ang180lem1 26064 ang180lem2 26065 ang180lem3 26066 ang180lem4 26067 acosf 26129 acosneg 26142 acoscos 26148 acos1 26150 sinacos 26160 atanlogsublem 26170 atanlogsub 26171 atantan 26178 atanbndlem 26180 basellem1 26335 efmul2picn 32874 itgexpif 32884 vtscl 32916 vtsprod 32917 circlemeth 32918 logi 33990 cos2h 35924 tan2h 35925 areacirc 36026 acos1half 40478 proot1ex 41340 coseq0 43793 coskpi2 43795 cosnegpi 43796 sinaover2ne0 43797 cosknegpi 43798 itgsinexplem1 43883 wallispilem4 43997 wallispi 43999 stirlinglem15 44017 dirker2re 44021 dirkerdenne0 44022 dirkerper 44025 dirkertrigeqlem1 44027 dirkertrigeqlem2 44028 dirkertrigeqlem3 44029 dirkertrigeq 44030 dirkeritg 44031 dirkercncflem1 44032 dirkercncflem2 44033 fourierdlem62 44097 fourierdlem66 44101 fourierdlem94 44129 fourierdlem95 44130 fourierdlem101 44136 fourierdlem102 44137 fourierdlem103 44138 fourierdlem111 44146 fourierdlem112 44147 fourierdlem113 44148 fourierdlem114 44149 sqwvfoura 44157 sqwvfourb 44158 fourierswlem 44159 fouriersw 44160 |
Copyright terms: Public domain | W3C validator |