| Intuitionistic Logic Explorer Theorem List (p. 164 of 164) | < Previous Wrap > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | exmidsbthrlem 16301* | Lemma for exmidsbthr 16302. (Contributed by Jim Kingdon, 11-Aug-2022.) |
| ⊢ 𝑆 = (𝑝 ∈ ℕ∞ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))) ⇒ ⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) | ||
| Theorem | exmidsbthr 16302* | The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.) |
| ⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) | ||
| Theorem | exmidsbth 16303* |
The Schroeder-Bernstein Theorem is equivalent to excluded middle. This
is Metamath 100 proof #25. The forward direction (isbth 7102) is the
proof of the Schroeder-Bernstein Theorem from the Metamath Proof
Explorer database (in which excluded middle holds), but adapted to use
EXMID as an antecedent rather
than being unconditionally true, as in
the non-intuitionistic proof at
https://us.metamath.org/mpeuni/sbth.html 7102.
The reverse direction (exmidsbthr 16302) is the one which establishes that Schroeder-Bernstein implies excluded middle. This resolves the question of whether we will be able to prove Schroeder-Bernstein from our axioms in the negative. (Contributed by Jim Kingdon, 13-Aug-2022.) |
| ⊢ (EXMID ↔ ∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦)) | ||
| Theorem | sbthomlem 16304 | Lemma for sbthom 16305. (Contributed by Mario Carneiro and Jim Kingdon, 13-Jul-2023.) |
| ⊢ (𝜑 → ω ∈ Omni) & ⊢ (𝜑 → 𝑌 ⊆ {∅}) & ⊢ (𝜑 → 𝐹:ω–1-1-onto→(𝑌 ⊔ ω)) ⇒ ⊢ (𝜑 → (𝑌 = ∅ ∨ 𝑌 = {∅})) | ||
| Theorem | sbthom 16305 | Schroeder-Bernstein is not possible even for ω. We know by exmidsbth 16303 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is ω? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.) |
| ⊢ ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → EXMID) | ||
| Theorem | qdencn 16306* | The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 11679 (and also would hold for ℝ × ℝ with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.) |
| ⊢ 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)} ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ 𝑄 (abs‘(𝑥 − 𝐴)) < 𝐵) | ||
| Theorem | refeq 16307* | Equality of two real functions which agree at negative numbers, positive numbers, and zero. This holds even without real trichotomy. From an online post by Martin Escardo. (Contributed by Jim Kingdon, 9-Jul-2023.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐺:ℝ⟶ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑥 < 0 → (𝐹‘𝑥) = (𝐺‘𝑥))) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ (0 < 𝑥 → (𝐹‘𝑥) = (𝐺‘𝑥))) & ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | triap 16308 | Two ways of stating real number trichotomy. (Contributed by Jim Kingdon, 23-Aug-2023.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) ↔ DECID 𝐴 # 𝐵)) | ||
| Theorem | isomninnlem 16309* | Lemma for isomninn 16310. The result, with a hypothesis to provide a convenient notation. (Contributed by Jim Kingdon, 30-Aug-2023.) |
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) | ||
| Theorem | isomninn 16310* | Omniscience stated in terms of natural numbers. Similar to isomnimap 7272 but it will sometimes be more convenient to use 0 and 1 rather than ∅ and 1o. (Contributed by Jim Kingdon, 30-Aug-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0 ∨ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1))) | ||
| Theorem | cvgcmp2nlemabs 16311* | Lemma for cvgcmp2n 16312. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting (seq1( + , 𝐺)‘𝑁) as the sum of (seq1( + , 𝐺)‘𝑀) and a term which gets smaller as 𝑀 gets large. (Contributed by Jim Kingdon, 25-Aug-2023.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) ⇒ ⊢ (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀)) | ||
| Theorem | cvgcmp2n 16312* | A comparison test for convergence of a real infinite series. (Contributed by Jim Kingdon, 25-Aug-2023.) |
| ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ ) | ||
| Theorem | iooref1o 16313 | A one-to-one mapping from the real numbers onto the open unit interval. (Contributed by Jim Kingdon, 27-Jun-2024.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (1 / (1 + (exp‘𝑥)))) ⇒ ⊢ 𝐹:ℝ–1-1-onto→(0(,)1) | ||
| Theorem | iooreen 16314 | An open interval is equinumerous to the real numbers. (Contributed by Jim Kingdon, 27-Jun-2024.) |
| ⊢ (0(,)1) ≈ ℝ | ||
Omniscience principles refer to several propositions, most of them weaker than full excluded middle, which do not follow from the axioms of IZF set theory. They are: (0) the Principle of Omniscience (PO), which is another name for excluded middle (see exmidomni 7277), (1) the Limited Principle of Omniscience (LPO) is ω ∈ Omni (see df-omni 7270), (2) the Weak Limited Principle of Omniscience (WLPO) is ω ∈ WOmni (see df-womni 7299), (3) Markov's Principle (MP) is ω ∈ Markov (see df-markov 7287), (4) the Lesser Limited Principle of Omniscience (LLPO) is not yet defined in iset.mm. They also have analytic counterparts each of which follows from the corresponding omniscience principle: (1) Analytic LPO is real number trichotomy, ∀𝑥 ∈ ℝ∀𝑦 ∈ ℝ(𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) (see trilpo 16322), (2) Analytic WLPO is decidability of real number equality, ∀𝑥 ∈ ℝ∀𝑦 ∈ ℝDECID 𝑥 = 𝑦 (see redcwlpo 16334), (3) Analytic MP is ∀𝑥 ∈ ℝ∀𝑦 ∈ ℝ(𝑥 ≠ 𝑦 → 𝑥 # 𝑦) (see neapmkv 16347), (4) Analytic LLPO is real number dichotomy, ∀𝑥 ∈ ℝ∀𝑦 ∈ ℝ(𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) (most relevant current theorem is maxclpr 11699). | ||
| Theorem | trilpolemclim 16315* | Lemma for trilpo 16322. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) ⇒ ⊢ (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ ) | ||
| Theorem | trilpolemcl 16316* | Lemma for trilpo 16322. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | trilpolemisumle 16317* | Lemma for trilpo 16322. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℕ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ 𝑍 ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ Σ𝑖 ∈ 𝑍 (1 / (2↑𝑖))) | ||
| Theorem | trilpolemgt1 16318* | Lemma for trilpo 16322. The 1 < 𝐴 case. (Contributed by Jim Kingdon, 23-Aug-2023.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ⇒ ⊢ (𝜑 → ¬ 1 < 𝐴) | ||
| Theorem | trilpolemeq1 16319* | Lemma for trilpo 16322. The 𝐴 = 1 case. This is proved by noting that if any (𝐹‘𝑥) is zero, then the infinite sum 𝐴 is less than one based on the term which is zero. We are using the fact that the 𝐹 sequence is decidable (in the sense that each element is either zero or one). (Contributed by Jim Kingdon, 23-Aug-2023.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ (𝜑 → 𝐴 = 1) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) | ||
| Theorem | trilpolemlt1 16320* | Lemma for trilpo 16322. The 𝐴 < 1 case. We can use the distance between 𝐴 and one (that is, 1 − 𝐴) to find a position in the sequence 𝑛 where terms after that point will not add up to as much as 1 − 𝐴. By finomni 7275 we know the terms up to 𝑛 either contain a zero or are all one. But if they are all one that contradicts the way we constructed 𝑛, so we know that the sequence contains a zero. (Contributed by Jim Kingdon, 23-Aug-2023.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0) | ||
| Theorem | trilpolemres 16321* | Lemma for trilpo 16322. The result. (Contributed by Jim Kingdon, 23-Aug-2023.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ (𝜑 → (𝐴 < 1 ∨ 𝐴 = 1 ∨ 1 < 𝐴)) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0 ∨ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) | ||
| Theorem | trilpo 16322* |
Real number trichotomy implies the Limited Principle of Omniscience
(LPO). We expect that we'd need some form of countable choice to prove
the converse.
Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 16320 (which means the sequence contains a zero), trilpolemeq1 16319 (which means the sequence is all ones), and trilpolemgt1 16318 (which is not possible). Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 16308) or that the real numbers are a discrete field (see trirec0 16323). LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10427 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.) |
| ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ω ∈ Omni) | ||
| Theorem | trirec0 16323* |
Every real number having a reciprocal or equaling zero is equivalent to
real number trichotomy.
This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 16322). (Contributed by Jim Kingdon, 10-Jun-2024.) |
| ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ∨ 𝑥 = 0)) | ||
| Theorem | trirec0xor 16324* |
Version of trirec0 16323 with exclusive-or.
The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.) |
| ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑥 ∈ ℝ (∃𝑧 ∈ ℝ (𝑥 · 𝑧) = 1 ⊻ 𝑥 = 0)) | ||
| Theorem | apdifflemf 16325 | Lemma for apdiff 16327. Being apart from the point halfway between 𝑄 and 𝑅 suffices for 𝐴 to be a different distance from 𝑄 and from 𝑅. (Contributed by Jim Kingdon, 18-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑄 ∈ ℚ) & ⊢ (𝜑 → 𝑅 ∈ ℚ) & ⊢ (𝜑 → 𝑄 < 𝑅) & ⊢ (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) # (abs‘(𝐴 − 𝑅))) | ||
| Theorem | apdifflemr 16326 | Lemma for apdiff 16327. (Contributed by Jim Kingdon, 19-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑆 ∈ ℚ) & ⊢ (𝜑 → (abs‘(𝐴 − -1)) # (abs‘(𝐴 − 1))) & ⊢ ((𝜑 ∧ 𝑆 ≠ 0) → (abs‘(𝐴 − 0)) # (abs‘(𝐴 − (2 · 𝑆)))) ⇒ ⊢ (𝜑 → 𝐴 # 𝑆) | ||
| Theorem | apdiff 16327* | The irrationals (reals apart from any rational) are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 17-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → (∀𝑞 ∈ ℚ 𝐴 # 𝑞 ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞 ≠ 𝑟 → (abs‘(𝐴 − 𝑞)) # (abs‘(𝐴 − 𝑟))))) | ||
| Theorem | iswomninnlem 16328* | Lemma for iswomnimap 7301. The result, with a hypothesis for convenience. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) | ||
| Theorem | iswomninn 16329* | Weak omniscience stated in terms of natural numbers. Similar to iswomnimap 7301 but it will sometimes be more convenient to use 0 and 1 rather than ∅ and 1o. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1)) | ||
| Theorem | iswomni0 16330* | Weak omniscience stated in terms of equality with 0. Like iswomninn 16329 but with zero in place of one. (Contributed by Jim Kingdon, 24-Jul-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0)) | ||
| Theorem | ismkvnnlem 16331* | Lemma for ismkvnn 16332. The result, with a hypothesis to give a name to an expression for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.) |
| ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0))) | ||
| Theorem | ismkvnn 16332* | The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 25-Jun-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Markov ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1 → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = 0))) | ||
| Theorem | redcwlpolemeq1 16333* | Lemma for redcwlpo 16334. A biconditionalized version of trilpolemeq1 16319. (Contributed by Jim Kingdon, 21-Jun-2024.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ⇒ ⊢ (𝜑 → (𝐴 = 1 ↔ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) | ||
| Theorem | redcwlpo 16334* |
Decidability of real number equality implies the Weak Limited Principle
of Omniscience (WLPO). We expect that we'd need some form of countable
choice to prove the converse.
Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence is all ones or it is not. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. This real number will equal one if and only if the sequence is all ones (redcwlpolemeq1 16333). Therefore decidability of real number equality would imply decidability of whether the sequence is all ones. Because of this theorem, decidability of real number equality is sometimes called "analytic WLPO". WLPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qdceq 10431 for real numbers. (Contributed by Jim Kingdon, 20-Jun-2024.) |
| ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 → ω ∈ WOmni) | ||
| Theorem | tridceq 16335* | Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 16322 and redcwlpo 16334). Thus, this is an analytic analogue to lpowlpo 7303. (Contributed by Jim Kingdon, 24-Jul-2024.) |
| ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) | ||
| Theorem | redc0 16336* | Two ways to express decidability of real number equality. (Contributed by Jim Kingdon, 23-Jul-2024.) |
| ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦 ↔ ∀𝑧 ∈ ℝ DECID 𝑧 = 0) | ||
| Theorem | reap0 16337* | Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.) |
| ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℝ DECID 𝑧 # 0) | ||
| Theorem | cndcap 16338* | Real number trichotomy is equivalent to decidability of complex number apartness. (Contributed by Jim Kingdon, 10-Apr-2025.) |
| ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℂ ∀𝑤 ∈ ℂ DECID 𝑧 # 𝑤) | ||
| Theorem | dceqnconst 16339* | Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 16334 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.) |
| ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) | ||
| Theorem | dcapnconst 16340* |
Decidability of real number apartness implies the existence of a certain
non-constant function from real numbers to integers. Variation of
Exercise 11.6(i) of [HoTT], p. (varies).
See trilpo 16322 for more
discussion of decidability of real number apartness.
This is a weaker form of dceqnconst 16339 and in fact this theorem can be proved using dceqnconst 16339 as shown at dcapnconstALT 16341. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) |
| ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) | ||
| Theorem | dcapnconstALT 16341* | Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 16340 by means of dceqnconst 16339. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) | ||
| Theorem | nconstwlpolem0 16342* | Lemma for nconstwlpo 16345. If all the terms of the series are zero, so is their sum. (Contributed by Jim Kingdon, 26-Jul-2024.) |
| ⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ (𝐺‘𝑥) = 0) ⇒ ⊢ (𝜑 → 𝐴 = 0) | ||
| Theorem | nconstwlpolemgt0 16343* | Lemma for nconstwlpo 16345. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.) |
| ⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) & ⊢ (𝜑 → ∃𝑥 ∈ ℕ (𝐺‘𝑥) = 1) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
| Theorem | nconstwlpolem 16344* | Lemma for nconstwlpo 16345. (Contributed by Jim Kingdon, 23-Jul-2024.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℤ) & ⊢ (𝜑 → (𝐹‘0) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) & ⊢ (𝜑 → 𝐺:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐺‘𝑖)) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0 ∨ ¬ ∀𝑦 ∈ ℕ (𝐺‘𝑦) = 0)) | ||
| Theorem | nconstwlpo 16345* | Existence of a certain non-constant function from reals to integers implies ω ∈ WOmni (the Weak Limited Principle of Omniscience or WLPO). Based on Exercise 11.6(ii) of [HoTT], p. (varies). (Contributed by BJ and Jim Kingdon, 22-Jul-2024.) |
| ⊢ (𝜑 → 𝐹:ℝ⟶ℤ) & ⊢ (𝜑 → (𝐹‘0) = 0) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐹‘𝑥) ≠ 0) ⇒ ⊢ (𝜑 → ω ∈ WOmni) | ||
| Theorem | neapmkvlem 16346* | Lemma for neapmkv 16347. The result, with a few hypotheses broken out for convenience. (Contributed by Jim Kingdon, 25-Jun-2024.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) & ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) & ⊢ ((𝜑 ∧ 𝐴 ≠ 1) → 𝐴 # 1) ⇒ ⊢ (𝜑 → (¬ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1 → ∃𝑥 ∈ ℕ (𝐹‘𝑥) = 0)) | ||
| Theorem | neapmkv 16347* | If negated equality for real numbers implies apartness, Markov's Principle follows. Exercise 11.10 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Jun-2024.) |
| ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) → ω ∈ Markov) | ||
| Theorem | neap0mkv 16348* | The analytic Markov principle can be expressed either with two arbitrary real numbers, or one arbitrary number and zero. (Contributed by Jim Kingdon, 23-Feb-2025.) |
| ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦) ↔ ∀𝑥 ∈ ℝ (𝑥 ≠ 0 → 𝑥 # 0)) | ||
| Theorem | ltlenmkv 16349* | If < can be expressed as holding exactly when ≤ holds and the values are not equal, then the analytic Markov's Principle applies. (To get the regular Markov's Principle, combine with neapmkv 16347). (Contributed by Jim Kingdon, 23-Feb-2025.) |
| ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ↔ (𝑥 ≤ 𝑦 ∧ 𝑦 ≠ 𝑥)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 ≠ 𝑦 → 𝑥 # 𝑦)) | ||
| Theorem | supfz 16350 | The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) | ||
| Theorem | inffz 16351 | The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.) |
| ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) | ||
| Theorem | taupi 16352 | Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.) |
| ⊢ τ = (2 · π) | ||
| Theorem | ax1hfs 16353 | Heyting's formal system Axiom #1 from [Heyting] p. 127. (Contributed by MM, 11-Aug-2018.) |
| ⊢ (𝜑 → (𝜑 ∧ 𝜑)) | ||
| Theorem | dftest 16354 |
A proposition is testable iff its negative or double-negative is true.
See Chapter 2 [Moschovakis] p. 2.
We do not formally define testability with a new token, but instead use DECID ¬ before the formula in question. For example, DECID ¬ 𝑥 = 𝑦 corresponds to "𝑥 = 𝑦 is testable". (Contributed by David A. Wheeler, 13-Aug-2018.) For statements about testable propositions, search for the keyword "testable" in the comments of statements, for instance using the Metamath command "MM> SEARCH * "testable" / COMMENTS". (New usage is discouraged.) |
| ⊢ (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | ||
These are definitions and proofs involving an experimental "allsome" quantifier (aka "all some"). In informal language, statements like "All Martians are green" imply that there is at least one Martian. But it's easy to mistranslate informal language into formal notations because similar statements like ∀𝑥𝜑 → 𝜓 do not imply that 𝜑 is ever true, leading to vacuous truths. Some systems include a mechanism to counter this, e.g., PVS allows types to be appended with "+" to declare that they are nonempty. This section presents a different solution to the same problem. The "allsome" quantifier expressly includes the notion of both "all" and "there exists at least one" (aka some), and is defined to make it easier to more directly express both notions. The hope is that if a quantifier more directly expresses this concept, it will be used instead and reduce the risk of creating formal expressions that look okay but in fact are mistranslations. The term "allsome" was chosen because it's short, easy to say, and clearly hints at the two concepts it combines. I do not expect this to be used much in metamath, because in metamath there's a general policy of avoiding the use of new definitions unless there are very strong reasons to do so. Instead, my goal is to rigorously define this quantifier and demonstrate a few basic properties of it. The syntax allows two forms that look like they would be problematic, but they are fine. When applied to a top-level implication we allow ∀!𝑥(𝜑 → 𝜓), and when restricted (applied to a class) we allow ∀!𝑥 ∈ 𝐴𝜑. The first symbol after the setvar variable must always be ∈ if it is the form applied to a class, and since ∈ cannot begin a wff, it is unambiguous. The → looks like it would be a problem because 𝜑 or 𝜓 might include implications, but any implication arrow → within any wff must be surrounded by parentheses, so only the implication arrow of ∀! can follow the wff. The implication syntax would work fine without the parentheses, but I added the parentheses because it makes things clearer inside larger complex expressions, and it's also more consistent with the rest of the syntax. For more, see "The Allsome Quantifier" by David A. Wheeler at https://dwheeler.com/essays/allsome.html I hope that others will eventually agree that allsome is awesome. | ||
| Syntax | walsi 16355 | Extend wff definition to include "all some" applied to a top-level implication, which means 𝜓 is true whenever 𝜑 is true, and there is at least least one 𝑥 where 𝜑 is true. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| wff ∀!𝑥(𝜑 → 𝜓) | ||
| Syntax | walsc 16356 | Extend wff definition to include "all some" applied to a class, which means 𝜑 is true for all 𝑥 in 𝐴, and there is at least one 𝑥 in 𝐴. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| wff ∀!𝑥 ∈ 𝐴𝜑 | ||
| Definition | df-alsi 16357 | Define "all some" applied to a top-level implication, which means 𝜓 is true whenever 𝜑 is true and there is at least one 𝑥 where 𝜑 is true. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| ⊢ (∀!𝑥(𝜑 → 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑)) | ||
| Definition | df-alsc 16358 | Define "all some" applied to a class, which means 𝜑 is true for all 𝑥 in 𝐴 and there is at least one 𝑥 in 𝐴. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| ⊢ (∀!𝑥 ∈ 𝐴𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴)) | ||
| Theorem | alsconv 16359 | There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018.) |
| ⊢ (∀!𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀!𝑥 ∈ 𝐴𝜑) | ||
| Theorem | alsi1d 16360 | Deduction rule: Given "all some" applied to a top-level inference, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| ⊢ (𝜑 → ∀!𝑥(𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) | ||
| Theorem | alsi2d 16361 | Deduction rule: Given "all some" applied to a top-level inference, you can extract the "exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| ⊢ (𝜑 → ∀!𝑥(𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
| Theorem | alsc1d 16362 | Deduction rule: Given "all some" applied to a class, you can extract the "for all" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | alsc2d 16363 | Deduction rule: Given "all some" applied to a class, you can extract the "there exists" part. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| ⊢ (𝜑 → ∀!𝑥 ∈ 𝐴𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) | ||
| < Previous Wrap > |
| Copyright terms: Public domain | < Previous Wrap > |