| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c1rh | Structured version Visualization version GIF version | ||
| Description: Claim 1 of AKS primality proof with collapsed definitions since their ease of use is no longer needed. (Contributed by metakunt, 1-May-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c1rh.1 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
| aks6d1c1rh.2 | ⊢ 𝑃 = (chr‘𝐾) |
| aks6d1c1rh.3 | ⊢ (𝜑 → 𝐾 ∈ Field) |
| aks6d1c1rh.4 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks6d1c1rh.5 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks6d1c1rh.6 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks6d1c1rh.7 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks6d1c1rh.8 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks6d1c1rh.9 | ⊢ (𝜑 → 𝐹:(0...𝐴)⟶ℕ0) |
| aks6d1c1rh.10 | ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) |
| aks6d1c1rh.11 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| aks6d1c1rh.12 | ⊢ (𝜑 → 𝑈 ∈ ℕ0) |
| aks6d1c1rh.13 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
| aks6d1c1rh.14 | ⊢ 𝐸 = ((𝑃↑𝑈) · ((𝑁 / 𝑃)↑𝐿)) |
| aks6d1c1rh.15 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
| aks6d1c1rh.16 | ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
| Ref | Expression |
|---|---|
| aks6d1c1rh | ⊢ (𝜑 → 𝐸 ∼ (𝐺‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks6d1c1rh.1 | . . 3 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} | |
| 2 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑧(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) | |
| 3 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑦(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)) | |
| 4 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (((eval1‘𝐾)‘𝑓)‘𝑦) = (((eval1‘𝐾)‘𝑓)‘𝑧)) | |
| 5 | 4 | oveq2d 7403 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧))) |
| 6 | oveq2 7395 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝑒(.g‘(mulGrp‘𝐾))𝑦) = (𝑒(.g‘(mulGrp‘𝐾))𝑧)) | |
| 7 | 6 | fveq2d 6862 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧))) |
| 8 | 5, 7 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ((𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) ↔ (𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))) |
| 9 | 2, 3, 8 | cbvralw 3280 | . . . . 5 ⊢ (∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) ↔ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧))) |
| 10 | 9 | 3anbi3i 1159 | . . . 4 ⊢ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦))) ↔ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))) |
| 11 | 10 | opabbii 5174 | . . 3 ⊢ {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))} |
| 12 | 1, 11 | eqtri 2752 | . 2 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))} |
| 13 | eqid 2729 | . 2 ⊢ (Poly1‘𝐾) = (Poly1‘𝐾) | |
| 14 | eqid 2729 | . 2 ⊢ (Base‘(Poly1‘𝐾)) = (Base‘(Poly1‘𝐾)) | |
| 15 | eqid 2729 | . 2 ⊢ (var1‘𝐾) = (var1‘𝐾) | |
| 16 | eqid 2729 | . 2 ⊢ (mulGrp‘(Poly1‘𝐾)) = (mulGrp‘(Poly1‘𝐾)) | |
| 17 | eqid 2729 | . 2 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
| 18 | eqid 2729 | . 2 ⊢ (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾)) | |
| 19 | eqid 2729 | . 2 ⊢ (algSc‘(Poly1‘𝐾)) = (algSc‘(Poly1‘𝐾)) | |
| 20 | eqid 2729 | . 2 ⊢ (.g‘(mulGrp‘(Poly1‘𝐾))) = (.g‘(mulGrp‘(Poly1‘𝐾))) | |
| 21 | aks6d1c1rh.2 | . 2 ⊢ 𝑃 = (chr‘𝐾) | |
| 22 | eqid 2729 | . 2 ⊢ (eval1‘𝐾) = (eval1‘𝐾) | |
| 23 | eqid 2729 | . 2 ⊢ (+g‘(Poly1‘𝐾)) = (+g‘(Poly1‘𝐾)) | |
| 24 | aks6d1c1rh.3 | . 2 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 25 | aks6d1c1rh.4 | . 2 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 26 | aks6d1c1rh.5 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 27 | aks6d1c1rh.6 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 28 | aks6d1c1rh.7 | . 2 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 29 | aks6d1c1rh.8 | . 2 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 30 | aks6d1c1rh.9 | . 2 ⊢ (𝜑 → 𝐹:(0...𝐴)⟶ℕ0) | |
| 31 | aks6d1c1rh.10 | . 2 ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) | |
| 32 | aks6d1c1rh.11 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 33 | aks6d1c1rh.12 | . 2 ⊢ (𝜑 → 𝑈 ∈ ℕ0) | |
| 34 | aks6d1c1rh.13 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
| 35 | aks6d1c1rh.14 | . 2 ⊢ 𝐸 = ((𝑃↑𝑈) · ((𝑁 / 𝑃)↑𝐿)) | |
| 36 | aks6d1c1rh.15 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) | |
| 37 | aks6d1c1rh.16 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) | |
| 38 | 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 | aks6d1c1 42104 | 1 ⊢ (𝜑 → 𝐸 ∼ (𝐺‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 {copab 5169 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 0cc0 11068 1c1 11069 · cmul 11073 / cdiv 11835 ℕcn 12186 ℕ0cn0 12442 ...cfz 13468 ↑cexp 14026 ∥ cdvds 16222 gcd cgcd 16464 ℙcprime 16641 Basecbs 17179 +gcplusg 17220 Σg cgsu 17403 .gcmg 18999 mulGrpcmgp 20049 RingIso crs 20379 Fieldcfield 20639 ℤRHomczrh 21409 chrcchr 21411 algSccascl 21761 var1cv1 22060 Poly1cpl1 22061 eval1ce1 22201 PrimRoots cprimroots 42079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 df-prm 16642 df-phi 16736 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-od 19458 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-rim 20382 df-subrng 20455 df-subrg 20479 df-drng 20640 df-field 20641 df-lmod 20768 df-lss 20838 df-lsp 20878 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-chr 21415 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-evls 21981 df-evl 21982 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-coe1 22067 df-evl1 22203 df-primroots 42080 |
| This theorem is referenced by: aks6d1c2lem3 42114 aks6d1c2lem4 42115 aks6d1c6lem2 42159 |
| Copyright terms: Public domain | W3C validator |