| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c1rh | Structured version Visualization version GIF version | ||
| Description: Claim 1 of AKS primality proof with collapsed definitions since their ease of use is no longer needed. (Contributed by metakunt, 1-May-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c1rh.1 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
| aks6d1c1rh.2 | ⊢ 𝑃 = (chr‘𝐾) |
| aks6d1c1rh.3 | ⊢ (𝜑 → 𝐾 ∈ Field) |
| aks6d1c1rh.4 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks6d1c1rh.5 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks6d1c1rh.6 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks6d1c1rh.7 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks6d1c1rh.8 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks6d1c1rh.9 | ⊢ (𝜑 → 𝐹:(0...𝐴)⟶ℕ0) |
| aks6d1c1rh.10 | ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) |
| aks6d1c1rh.11 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| aks6d1c1rh.12 | ⊢ (𝜑 → 𝑈 ∈ ℕ0) |
| aks6d1c1rh.13 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
| aks6d1c1rh.14 | ⊢ 𝐸 = ((𝑃↑𝑈) · ((𝑁 / 𝑃)↑𝐿)) |
| aks6d1c1rh.15 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
| aks6d1c1rh.16 | ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
| Ref | Expression |
|---|---|
| aks6d1c1rh | ⊢ (𝜑 → 𝐸 ∼ (𝐺‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks6d1c1rh.1 | . . 3 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} | |
| 2 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑧(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) | |
| 3 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑦(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)) | |
| 4 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (((eval1‘𝐾)‘𝑓)‘𝑦) = (((eval1‘𝐾)‘𝑓)‘𝑧)) | |
| 5 | 4 | oveq2d 7426 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧))) |
| 6 | oveq2 7418 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝑒(.g‘(mulGrp‘𝐾))𝑦) = (𝑒(.g‘(mulGrp‘𝐾))𝑧)) | |
| 7 | 6 | fveq2d 6885 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧))) |
| 8 | 5, 7 | eqeq12d 2752 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ((𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) ↔ (𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))) |
| 9 | 2, 3, 8 | cbvralw 3290 | . . . . 5 ⊢ (∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) ↔ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧))) |
| 10 | 9 | 3anbi3i 1159 | . . . 4 ⊢ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦))) ↔ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))) |
| 11 | 10 | opabbii 5191 | . . 3 ⊢ {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))} |
| 12 | 1, 11 | eqtri 2759 | . 2 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))} |
| 13 | eqid 2736 | . 2 ⊢ (Poly1‘𝐾) = (Poly1‘𝐾) | |
| 14 | eqid 2736 | . 2 ⊢ (Base‘(Poly1‘𝐾)) = (Base‘(Poly1‘𝐾)) | |
| 15 | eqid 2736 | . 2 ⊢ (var1‘𝐾) = (var1‘𝐾) | |
| 16 | eqid 2736 | . 2 ⊢ (mulGrp‘(Poly1‘𝐾)) = (mulGrp‘(Poly1‘𝐾)) | |
| 17 | eqid 2736 | . 2 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
| 18 | eqid 2736 | . 2 ⊢ (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾)) | |
| 19 | eqid 2736 | . 2 ⊢ (algSc‘(Poly1‘𝐾)) = (algSc‘(Poly1‘𝐾)) | |
| 20 | eqid 2736 | . 2 ⊢ (.g‘(mulGrp‘(Poly1‘𝐾))) = (.g‘(mulGrp‘(Poly1‘𝐾))) | |
| 21 | aks6d1c1rh.2 | . 2 ⊢ 𝑃 = (chr‘𝐾) | |
| 22 | eqid 2736 | . 2 ⊢ (eval1‘𝐾) = (eval1‘𝐾) | |
| 23 | eqid 2736 | . 2 ⊢ (+g‘(Poly1‘𝐾)) = (+g‘(Poly1‘𝐾)) | |
| 24 | aks6d1c1rh.3 | . 2 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 25 | aks6d1c1rh.4 | . 2 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 26 | aks6d1c1rh.5 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 27 | aks6d1c1rh.6 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 28 | aks6d1c1rh.7 | . 2 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 29 | aks6d1c1rh.8 | . 2 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 30 | aks6d1c1rh.9 | . 2 ⊢ (𝜑 → 𝐹:(0...𝐴)⟶ℕ0) | |
| 31 | aks6d1c1rh.10 | . 2 ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) | |
| 32 | aks6d1c1rh.11 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 33 | aks6d1c1rh.12 | . 2 ⊢ (𝜑 → 𝑈 ∈ ℕ0) | |
| 34 | aks6d1c1rh.13 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
| 35 | aks6d1c1rh.14 | . 2 ⊢ 𝐸 = ((𝑃↑𝑈) · ((𝑁 / 𝑃)↑𝐿)) | |
| 36 | aks6d1c1rh.15 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) | |
| 37 | aks6d1c1rh.16 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) | |
| 38 | 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 | aks6d1c1 42134 | 1 ⊢ (𝜑 → 𝐸 ∼ (𝐺‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 class class class wbr 5124 {copab 5186 ↦ cmpt 5206 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 0cc0 11134 1c1 11135 · cmul 11139 / cdiv 11899 ℕcn 12245 ℕ0cn0 12506 ...cfz 13529 ↑cexp 14084 ∥ cdvds 16277 gcd cgcd 16518 ℙcprime 16695 Basecbs 17233 +gcplusg 17276 Σg cgsu 17459 .gcmg 19055 mulGrpcmgp 20105 RingIso crs 20435 Fieldcfield 20695 ℤRHomczrh 21465 chrcchr 21467 algSccascl 21817 var1cv1 22116 Poly1cpl1 22117 eval1ce1 22257 PrimRoots cprimroots 42109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-gcd 16519 df-prm 16696 df-phi 16790 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-od 19514 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-rhm 20437 df-rim 20438 df-subrng 20511 df-subrg 20535 df-drng 20696 df-field 20697 df-lmod 20824 df-lss 20894 df-lsp 20934 df-cnfld 21321 df-zring 21413 df-zrh 21469 df-chr 21471 df-assa 21818 df-asp 21819 df-ascl 21820 df-psr 21874 df-mvr 21875 df-mpl 21876 df-opsr 21878 df-evls 22037 df-evl 22038 df-psr1 22120 df-vr1 22121 df-ply1 22122 df-coe1 22123 df-evl1 22259 df-primroots 42110 |
| This theorem is referenced by: aks6d1c2lem3 42144 aks6d1c2lem4 42145 aks6d1c6lem2 42189 |
| Copyright terms: Public domain | W3C validator |