| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c1rh | Structured version Visualization version GIF version | ||
| Description: Claim 1 of AKS primality proof with collapsed definitions since their ease of use is no longer needed. (Contributed by metakunt, 1-May-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c1rh.1 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
| aks6d1c1rh.2 | ⊢ 𝑃 = (chr‘𝐾) |
| aks6d1c1rh.3 | ⊢ (𝜑 → 𝐾 ∈ Field) |
| aks6d1c1rh.4 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks6d1c1rh.5 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks6d1c1rh.6 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks6d1c1rh.7 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks6d1c1rh.8 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks6d1c1rh.9 | ⊢ (𝜑 → 𝐹:(0...𝐴)⟶ℕ0) |
| aks6d1c1rh.10 | ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) |
| aks6d1c1rh.11 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| aks6d1c1rh.12 | ⊢ (𝜑 → 𝑈 ∈ ℕ0) |
| aks6d1c1rh.13 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
| aks6d1c1rh.14 | ⊢ 𝐸 = ((𝑃↑𝑈) · ((𝑁 / 𝑃)↑𝐿)) |
| aks6d1c1rh.15 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
| aks6d1c1rh.16 | ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
| Ref | Expression |
|---|---|
| aks6d1c1rh | ⊢ (𝜑 → 𝐸 ∼ (𝐺‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks6d1c1rh.1 | . . 3 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} | |
| 2 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑧(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) | |
| 3 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑦(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)) | |
| 4 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (((eval1‘𝐾)‘𝑓)‘𝑦) = (((eval1‘𝐾)‘𝑓)‘𝑧)) | |
| 5 | 4 | oveq2d 7406 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧))) |
| 6 | oveq2 7398 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝑒(.g‘(mulGrp‘𝐾))𝑦) = (𝑒(.g‘(mulGrp‘𝐾))𝑧)) | |
| 7 | 6 | fveq2d 6865 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧))) |
| 8 | 5, 7 | eqeq12d 2746 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ((𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) ↔ (𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))) |
| 9 | 2, 3, 8 | cbvralw 3282 | . . . . 5 ⊢ (∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) ↔ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧))) |
| 10 | 9 | 3anbi3i 1159 | . . . 4 ⊢ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦))) ↔ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))) |
| 11 | 10 | opabbii 5177 | . . 3 ⊢ {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))} |
| 12 | 1, 11 | eqtri 2753 | . 2 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))} |
| 13 | eqid 2730 | . 2 ⊢ (Poly1‘𝐾) = (Poly1‘𝐾) | |
| 14 | eqid 2730 | . 2 ⊢ (Base‘(Poly1‘𝐾)) = (Base‘(Poly1‘𝐾)) | |
| 15 | eqid 2730 | . 2 ⊢ (var1‘𝐾) = (var1‘𝐾) | |
| 16 | eqid 2730 | . 2 ⊢ (mulGrp‘(Poly1‘𝐾)) = (mulGrp‘(Poly1‘𝐾)) | |
| 17 | eqid 2730 | . 2 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
| 18 | eqid 2730 | . 2 ⊢ (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾)) | |
| 19 | eqid 2730 | . 2 ⊢ (algSc‘(Poly1‘𝐾)) = (algSc‘(Poly1‘𝐾)) | |
| 20 | eqid 2730 | . 2 ⊢ (.g‘(mulGrp‘(Poly1‘𝐾))) = (.g‘(mulGrp‘(Poly1‘𝐾))) | |
| 21 | aks6d1c1rh.2 | . 2 ⊢ 𝑃 = (chr‘𝐾) | |
| 22 | eqid 2730 | . 2 ⊢ (eval1‘𝐾) = (eval1‘𝐾) | |
| 23 | eqid 2730 | . 2 ⊢ (+g‘(Poly1‘𝐾)) = (+g‘(Poly1‘𝐾)) | |
| 24 | aks6d1c1rh.3 | . 2 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 25 | aks6d1c1rh.4 | . 2 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 26 | aks6d1c1rh.5 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 27 | aks6d1c1rh.6 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 28 | aks6d1c1rh.7 | . 2 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 29 | aks6d1c1rh.8 | . 2 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 30 | aks6d1c1rh.9 | . 2 ⊢ (𝜑 → 𝐹:(0...𝐴)⟶ℕ0) | |
| 31 | aks6d1c1rh.10 | . 2 ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) | |
| 32 | aks6d1c1rh.11 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 33 | aks6d1c1rh.12 | . 2 ⊢ (𝜑 → 𝑈 ∈ ℕ0) | |
| 34 | aks6d1c1rh.13 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
| 35 | aks6d1c1rh.14 | . 2 ⊢ 𝐸 = ((𝑃↑𝑈) · ((𝑁 / 𝑃)↑𝐿)) | |
| 36 | aks6d1c1rh.15 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) | |
| 37 | aks6d1c1rh.16 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) | |
| 38 | 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 | aks6d1c1 42111 | 1 ⊢ (𝜑 → 𝐸 ∼ (𝐺‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 {copab 5172 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 0cc0 11075 1c1 11076 · cmul 11080 / cdiv 11842 ℕcn 12193 ℕ0cn0 12449 ...cfz 13475 ↑cexp 14033 ∥ cdvds 16229 gcd cgcd 16471 ℙcprime 16648 Basecbs 17186 +gcplusg 17227 Σg cgsu 17410 .gcmg 19006 mulGrpcmgp 20056 RingIso crs 20386 Fieldcfield 20646 ℤRHomczrh 21416 chrcchr 21418 algSccascl 21768 var1cv1 22067 Poly1cpl1 22068 eval1ce1 22208 PrimRoots cprimroots 42086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-prm 16649 df-phi 16743 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-od 19465 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-rim 20389 df-subrng 20462 df-subrg 20486 df-drng 20647 df-field 20648 df-lmod 20775 df-lss 20845 df-lsp 20885 df-cnfld 21272 df-zring 21364 df-zrh 21420 df-chr 21422 df-assa 21769 df-asp 21770 df-ascl 21771 df-psr 21825 df-mvr 21826 df-mpl 21827 df-opsr 21829 df-evls 21988 df-evl 21989 df-psr1 22071 df-vr1 22072 df-ply1 22073 df-coe1 22074 df-evl1 22210 df-primroots 42087 |
| This theorem is referenced by: aks6d1c2lem3 42121 aks6d1c2lem4 42122 aks6d1c6lem2 42166 |
| Copyright terms: Public domain | W3C validator |