| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c1rh | Structured version Visualization version GIF version | ||
| Description: Claim 1 of AKS primality proof with collapsed definitions since their ease of use is no longer needed. (Contributed by metakunt, 1-May-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c1rh.1 | ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} |
| aks6d1c1rh.2 | ⊢ 𝑃 = (chr‘𝐾) |
| aks6d1c1rh.3 | ⊢ (𝜑 → 𝐾 ∈ Field) |
| aks6d1c1rh.4 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks6d1c1rh.5 | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| aks6d1c1rh.6 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks6d1c1rh.7 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| aks6d1c1rh.8 | ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| aks6d1c1rh.9 | ⊢ (𝜑 → 𝐹:(0...𝐴)⟶ℕ0) |
| aks6d1c1rh.10 | ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) |
| aks6d1c1rh.11 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| aks6d1c1rh.12 | ⊢ (𝜑 → 𝑈 ∈ ℕ0) |
| aks6d1c1rh.13 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
| aks6d1c1rh.14 | ⊢ 𝐸 = ((𝑃↑𝑈) · ((𝑁 / 𝑃)↑𝐿)) |
| aks6d1c1rh.15 | ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) |
| aks6d1c1rh.16 | ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) |
| Ref | Expression |
|---|---|
| aks6d1c1rh | ⊢ (𝜑 → 𝐸 ∼ (𝐺‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks6d1c1rh.1 | . . 3 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} | |
| 2 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑧(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) | |
| 3 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑦(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)) | |
| 4 | fveq2 6840 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (((eval1‘𝐾)‘𝑓)‘𝑦) = (((eval1‘𝐾)‘𝑓)‘𝑧)) | |
| 5 | 4 | oveq2d 7385 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧))) |
| 6 | oveq2 7377 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → (𝑒(.g‘(mulGrp‘𝐾))𝑦) = (𝑒(.g‘(mulGrp‘𝐾))𝑧)) | |
| 7 | 6 | fveq2d 6844 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧))) |
| 8 | 5, 7 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ((𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) ↔ (𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))) |
| 9 | 2, 3, 8 | cbvralw 3278 | . . . . 5 ⊢ (∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)) ↔ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧))) |
| 10 | 9 | 3anbi3i 1159 | . . . 4 ⊢ ((𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦))) ↔ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))) |
| 11 | 10 | opabbii 5169 | . . 3 ⊢ {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑦)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))} = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))} |
| 12 | 1, 11 | eqtri 2752 | . 2 ⊢ ∼ = {〈𝑒, 𝑓〉 ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1‘𝐾)) ∧ ∀𝑧 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1‘𝐾)‘𝑓)‘𝑧)) = (((eval1‘𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑧)))} |
| 13 | eqid 2729 | . 2 ⊢ (Poly1‘𝐾) = (Poly1‘𝐾) | |
| 14 | eqid 2729 | . 2 ⊢ (Base‘(Poly1‘𝐾)) = (Base‘(Poly1‘𝐾)) | |
| 15 | eqid 2729 | . 2 ⊢ (var1‘𝐾) = (var1‘𝐾) | |
| 16 | eqid 2729 | . 2 ⊢ (mulGrp‘(Poly1‘𝐾)) = (mulGrp‘(Poly1‘𝐾)) | |
| 17 | eqid 2729 | . 2 ⊢ (mulGrp‘𝐾) = (mulGrp‘𝐾) | |
| 18 | eqid 2729 | . 2 ⊢ (.g‘(mulGrp‘𝐾)) = (.g‘(mulGrp‘𝐾)) | |
| 19 | eqid 2729 | . 2 ⊢ (algSc‘(Poly1‘𝐾)) = (algSc‘(Poly1‘𝐾)) | |
| 20 | eqid 2729 | . 2 ⊢ (.g‘(mulGrp‘(Poly1‘𝐾))) = (.g‘(mulGrp‘(Poly1‘𝐾))) | |
| 21 | aks6d1c1rh.2 | . 2 ⊢ 𝑃 = (chr‘𝐾) | |
| 22 | eqid 2729 | . 2 ⊢ (eval1‘𝐾) = (eval1‘𝐾) | |
| 23 | eqid 2729 | . 2 ⊢ (+g‘(Poly1‘𝐾)) = (+g‘(Poly1‘𝐾)) | |
| 24 | aks6d1c1rh.3 | . 2 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 25 | aks6d1c1rh.4 | . 2 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 26 | aks6d1c1rh.5 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 27 | aks6d1c1rh.6 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 28 | aks6d1c1rh.7 | . 2 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 29 | aks6d1c1rh.8 | . 2 ⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) | |
| 30 | aks6d1c1rh.9 | . 2 ⊢ (𝜑 → 𝐹:(0...𝐴)⟶ℕ0) | |
| 31 | aks6d1c1rh.10 | . 2 ⊢ 𝐺 = (𝑔 ∈ (ℕ0 ↑m (0...𝐴)) ↦ ((mulGrp‘(Poly1‘𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔‘𝑖)(.g‘(mulGrp‘(Poly1‘𝐾)))((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) | |
| 32 | aks6d1c1rh.11 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 33 | aks6d1c1rh.12 | . 2 ⊢ (𝜑 → 𝑈 ∈ ℕ0) | |
| 34 | aks6d1c1rh.13 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
| 35 | aks6d1c1rh.14 | . 2 ⊢ 𝐸 = ((𝑃↑𝑈) · ((𝑁 / 𝑃)↑𝐿)) | |
| 36 | aks6d1c1rh.15 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ∼ ((var1‘𝐾)(+g‘(Poly1‘𝐾))((algSc‘(Poly1‘𝐾))‘((ℤRHom‘𝐾)‘𝑎)))) | |
| 37 | aks6d1c1rh.16 | . 2 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾)) | |
| 38 | 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 | aks6d1c1 42077 | 1 ⊢ (𝜑 → 𝐸 ∼ (𝐺‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5102 {copab 5164 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 0cc0 11044 1c1 11045 · cmul 11049 / cdiv 11811 ℕcn 12162 ℕ0cn0 12418 ...cfz 13444 ↑cexp 14002 ∥ cdvds 16198 gcd cgcd 16440 ℙcprime 16617 Basecbs 17155 +gcplusg 17196 Σg cgsu 17379 .gcmg 18975 mulGrpcmgp 20025 RingIso crs 20355 Fieldcfield 20615 ℤRHomczrh 21385 chrcchr 21387 algSccascl 21737 var1cv1 22036 Poly1cpl1 22037 eval1ce1 22177 PrimRoots cprimroots 42052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-prm 16618 df-phi 16712 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-od 19434 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-rhm 20357 df-rim 20358 df-subrng 20431 df-subrg 20455 df-drng 20616 df-field 20617 df-lmod 20744 df-lss 20814 df-lsp 20854 df-cnfld 21241 df-zring 21333 df-zrh 21389 df-chr 21391 df-assa 21738 df-asp 21739 df-ascl 21740 df-psr 21794 df-mvr 21795 df-mpl 21796 df-opsr 21798 df-evls 21957 df-evl 21958 df-psr1 22040 df-vr1 22041 df-ply1 22042 df-coe1 22043 df-evl1 22179 df-primroots 42053 |
| This theorem is referenced by: aks6d1c2lem3 42087 aks6d1c2lem4 42088 aks6d1c6lem2 42132 |
| Copyright terms: Public domain | W3C validator |