| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logcld | Structured version Visualization version GIF version | ||
| Description: The logarithm of a nonzero complex number is a complex number. Deduction form of logcl 26505. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| logcld.1 | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| logcld.2 | ⊢ (𝜑 → 𝑋 ≠ 0) |
| Ref | Expression |
|---|---|
| logcld | ⊢ (𝜑 → (log‘𝑋) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcld.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
| 2 | logcld.2 | . 2 ⊢ (𝜑 → 𝑋 ≠ 0) | |
| 3 | logcl 26505 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (log‘𝑋) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (log‘𝑋) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ≠ wne 2929 ‘cfv 6486 ℂcc 11011 0cc0 11013 logclog 26491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-fac 14183 df-bc 14212 df-hash 14240 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-ef 15976 df-sin 15978 df-cos 15979 df-pi 15981 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 df-log 26493 |
| This theorem is referenced by: logimclad 26509 eflogeq 26539 cosargd 26545 logcnlem3 26581 logcnlem4 26582 logcnlem5 26583 logcn 26584 dvloglem 26585 logf1o2 26587 logtayl 26597 logtayl2 26599 mulcxp 26622 dvcncxp1 26680 cxpeq 26695 logrec 26701 logbcl 26705 logb1 26707 relogbreexp 26713 nnlogbexp 26719 logbrec 26720 ang180lem1 26747 ang180lem2 26748 ang180lem3 26749 ang180lem4 26750 lawcos 26754 isosctrlem1 26756 isosctrlem2 26757 asinf 26810 atanf 26818 asinneg 26824 efiasin 26826 asinbnd 26837 atanneg 26845 atancj 26848 efiatan 26850 atanlogaddlem 26851 atanlogadd 26852 atanlogsublem 26853 atanlogsub 26854 efiatan2 26855 2efiatan 26856 atantan 26861 atanbndlem 26863 dvatan 26873 atantayl 26875 efrlim 26907 efrlimOLD 26908 lgamgulmlem2 26968 lgamgulmlem3 26969 lgamgulmlem5 26971 lgamgulmlem6 26972 lgamgulm2 26974 lgambdd 26975 lgamcvg2 26993 gamcvg 26994 gamp1 26996 gamcvg2lem 26997 arginv 32735 argcj 32736 hgt750lemd 34682 logdivsqrle 34684 hgt750lemb 34690 iprodgam 35807 dvasin 37764 aks4d1p1p1 42176 dvrelog2 42177 dvrelog3 42178 dvrelog2b 42179 dvrelogpow2b 42181 aks4d1p1p6 42186 aks4d1p1p7 42187 aks4d1p1p5 42188 cxp112d 42459 cxp111d 42460 readvrec2 42479 readvrec 42480 readvcot 42482 isosctrlem1ALT 45050 stirlinglem4 46199 stirlinglem5 46200 stirlinglem7 46202 stirlinglem12 46207 stirlinglem14 46209 |
| Copyright terms: Public domain | W3C validator |