| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logcld | Structured version Visualization version GIF version | ||
| Description: The logarithm of a nonzero complex number is a complex number. Deduction form of logcl 26502. (Contributed by David Moews, 28-Feb-2017.) |
| Ref | Expression |
|---|---|
| logcld.1 | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| logcld.2 | ⊢ (𝜑 → 𝑋 ≠ 0) |
| Ref | Expression |
|---|---|
| logcld | ⊢ (𝜑 → (log‘𝑋) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcld.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
| 2 | logcld.2 | . 2 ⊢ (𝜑 → 𝑋 ≠ 0) | |
| 3 | logcl 26502 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (log‘𝑋) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (log‘𝑋) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 ℂcc 11001 0cc0 11003 logclog 26488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ioc 13247 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-shft 14971 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-ef 15971 df-sin 15973 df-cos 15974 df-pi 15976 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 df-perf 23050 df-cn 23140 df-cnp 23141 df-haus 23228 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 df-limc 25792 df-dv 25793 df-log 26490 |
| This theorem is referenced by: logimclad 26506 eflogeq 26536 cosargd 26542 logcnlem3 26578 logcnlem4 26579 logcnlem5 26580 logcn 26581 dvloglem 26582 logf1o2 26584 logtayl 26594 logtayl2 26596 mulcxp 26619 dvcncxp1 26677 cxpeq 26692 logrec 26698 logbcl 26702 logb1 26704 relogbreexp 26710 nnlogbexp 26716 logbrec 26717 ang180lem1 26744 ang180lem2 26745 ang180lem3 26746 ang180lem4 26747 lawcos 26751 isosctrlem1 26753 isosctrlem2 26754 asinf 26807 atanf 26815 asinneg 26821 efiasin 26823 asinbnd 26834 atanneg 26842 atancj 26845 efiatan 26847 atanlogaddlem 26848 atanlogadd 26849 atanlogsublem 26850 atanlogsub 26851 efiatan2 26852 2efiatan 26853 atantan 26858 atanbndlem 26860 dvatan 26870 atantayl 26872 efrlim 26904 efrlimOLD 26905 lgamgulmlem2 26965 lgamgulmlem3 26966 lgamgulmlem5 26968 lgamgulmlem6 26969 lgamgulm2 26971 lgambdd 26972 lgamcvg2 26990 gamcvg 26991 gamp1 26993 gamcvg2lem 26994 arginv 32726 argcj 32727 hgt750lemd 34656 logdivsqrle 34658 hgt750lemb 34664 iprodgam 35774 dvasin 37743 aks4d1p1p1 42095 dvrelog2 42096 dvrelog3 42097 dvrelog2b 42098 dvrelogpow2b 42100 aks4d1p1p6 42105 aks4d1p1p7 42106 aks4d1p1p5 42107 cxp112d 42373 cxp111d 42374 readvrec2 42393 readvrec 42394 readvcot 42396 isosctrlem1ALT 44965 stirlinglem4 46114 stirlinglem5 46115 stirlinglem7 46117 stirlinglem12 46122 stirlinglem14 46124 |
| Copyright terms: Public domain | W3C validator |