Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > logcld | Structured version Visualization version GIF version |
Description: The logarithm of a nonzero complex number is a complex number. Deduction form of logcl 25274. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
logcld.1 | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
logcld.2 | ⊢ (𝜑 → 𝑋 ≠ 0) |
Ref | Expression |
---|---|
logcld | ⊢ (𝜑 → (log‘𝑋) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logcld.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ ℂ) | |
2 | logcld.2 | . 2 ⊢ (𝜑 → 𝑋 ≠ 0) | |
3 | logcl 25274 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → (log‘𝑋) ∈ ℂ) | |
4 | 1, 2, 3 | syl2anc 587 | 1 ⊢ (𝜑 → (log‘𝑋) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 ≠ wne 2952 ‘cfv 6341 ℂcc 10587 0cc0 10589 logclog 25260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-inf2 9151 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-pre-sup 10667 ax-addf 10668 ax-mulf 10669 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-se 5489 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-isom 6350 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-of 7412 df-om 7587 df-1st 7700 df-2nd 7701 df-supp 7843 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-2o 8120 df-er 8306 df-map 8425 df-pm 8426 df-ixp 8494 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-fsupp 8881 df-fi 8922 df-sup 8953 df-inf 8954 df-oi 9021 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-7 11756 df-8 11757 df-9 11758 df-n0 11949 df-z 12035 df-dec 12152 df-uz 12297 df-q 12403 df-rp 12445 df-xneg 12562 df-xadd 12563 df-xmul 12564 df-ioo 12797 df-ioc 12798 df-ico 12799 df-icc 12800 df-fz 12954 df-fzo 13097 df-fl 13225 df-mod 13301 df-seq 13433 df-exp 13494 df-fac 13698 df-bc 13727 df-hash 13755 df-shft 14488 df-cj 14520 df-re 14521 df-im 14522 df-sqrt 14656 df-abs 14657 df-limsup 14890 df-clim 14907 df-rlim 14908 df-sum 15105 df-ef 15483 df-sin 15485 df-cos 15486 df-pi 15488 df-struct 16558 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-starv 16653 df-sca 16654 df-vsca 16655 df-ip 16656 df-tset 16657 df-ple 16658 df-ds 16660 df-unif 16661 df-hom 16662 df-cco 16663 df-rest 16769 df-topn 16770 df-0g 16788 df-gsum 16789 df-topgen 16790 df-pt 16791 df-prds 16794 df-xrs 16848 df-qtop 16853 df-imas 16854 df-xps 16856 df-mre 16930 df-mrc 16931 df-acs 16933 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-submnd 18038 df-mulg 18307 df-cntz 18529 df-cmn 18990 df-psmet 20173 df-xmet 20174 df-met 20175 df-bl 20176 df-mopn 20177 df-fbas 20178 df-fg 20179 df-cnfld 20182 df-top 21609 df-topon 21626 df-topsp 21648 df-bases 21661 df-cld 21734 df-ntr 21735 df-cls 21736 df-nei 21813 df-lp 21851 df-perf 21852 df-cn 21942 df-cnp 21943 df-haus 22030 df-tx 22277 df-hmeo 22470 df-fil 22561 df-fm 22653 df-flim 22654 df-flf 22655 df-xms 23037 df-ms 23038 df-tms 23039 df-cncf 23594 df-limc 24580 df-dv 24581 df-log 25262 |
This theorem is referenced by: logimclad 25278 eflogeq 25307 cosargd 25313 logcnlem3 25349 logcnlem4 25350 logcnlem5 25351 logcn 25352 dvloglem 25353 logf1o2 25355 logtayl 25365 logtayl2 25367 mulcxp 25390 dvcncxp1 25446 cxpeq 25460 logrec 25463 logbcl 25467 logb1 25469 relogbreexp 25475 nnlogbexp 25481 logbrec 25482 ang180lem1 25509 ang180lem2 25510 ang180lem3 25511 ang180lem4 25512 lawcos 25516 isosctrlem1 25518 isosctrlem2 25519 asinf 25572 atanf 25580 asinneg 25586 efiasin 25588 asinbnd 25599 atanneg 25607 atancj 25610 efiatan 25612 atanlogaddlem 25613 atanlogadd 25614 atanlogsublem 25615 atanlogsub 25616 efiatan2 25617 2efiatan 25618 atantan 25623 atanbndlem 25625 dvatan 25635 atantayl 25637 efrlim 25669 lgamgulmlem2 25729 lgamgulmlem3 25730 lgamgulmlem5 25732 lgamgulmlem6 25733 lgamgulm2 25735 lgambdd 25736 lgamcvg2 25754 gamcvg 25755 gamp1 25757 gamcvg2lem 25758 hgt750lemd 32161 logdivsqrle 32163 hgt750lemb 32169 iprodgam 33237 dvasin 35457 aks4d1p1p1 39665 dvrelog2 39666 dvrelog3 39667 dvrelog2b 39668 dvrelogpow2b 39670 aks4d1p1p6 39675 aks4d1p1p7 39676 aks4d1p1p5 39677 isosctrlem1ALT 42059 stirlinglem4 43131 stirlinglem5 43132 stirlinglem7 43134 stirlinglem12 43139 stirlinglem14 43141 |
Copyright terms: Public domain | W3C validator |