| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem55 | Structured version Visualization version GIF version | ||
| Description: 𝑈 is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem55.f | ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| fourierdlem55.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fourierdlem55.r | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
| fourierdlem55.w | ⊢ (𝜑 → 𝑊 ∈ ℝ) |
| fourierdlem55.h | ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) |
| fourierdlem55.k | ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
| fourierdlem55.u | ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) |
| Ref | Expression |
|---|---|
| fourierdlem55 | ⊢ (𝜑 → 𝑈:(-π[,]π)⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem55.f | . . . . 5 ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | |
| 2 | fourierdlem55.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 3 | fourierdlem55.r | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
| 4 | fourierdlem55.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ℝ) | |
| 5 | fourierdlem55.h | . . . . 5 ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) | |
| 6 | 1, 2, 3, 4, 5 | fourierdlem9 46075 | . . . 4 ⊢ (𝜑 → 𝐻:(-π[,]π)⟶ℝ) |
| 7 | 6 | ffvelcdmda 7070 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝐻‘𝑠) ∈ ℝ) |
| 8 | fourierdlem55.k | . . . . . 6 ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) | |
| 9 | 8 | fourierdlem43 46109 | . . . . 5 ⊢ 𝐾:(-π[,]π)⟶ℝ |
| 10 | 9 | ffvelcdmi 7069 | . . . 4 ⊢ (𝑠 ∈ (-π[,]π) → (𝐾‘𝑠) ∈ ℝ) |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝐾‘𝑠) ∈ ℝ) |
| 12 | 7, 11 | remulcld 11257 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → ((𝐻‘𝑠) · (𝐾‘𝑠)) ∈ ℝ) |
| 13 | fourierdlem55.u | . 2 ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) | |
| 14 | 12, 13 | fmptd 7100 | 1 ⊢ (𝜑 → 𝑈:(-π[,]π)⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ifcif 4498 class class class wbr 5116 ↦ cmpt 5198 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 ℝcr 11120 0cc0 11121 1c1 11122 + caddc 11124 · cmul 11126 < clt 11261 − cmin 11458 -cneg 11459 / cdiv 11886 2c2 12287 [,]cicc 13356 sincsin 16066 πcpi 16069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-inf2 9647 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 ax-addf 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-fi 9417 df-sup 9448 df-inf 9449 df-oi 9516 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-q 12957 df-rp 13001 df-xneg 13120 df-xadd 13121 df-xmul 13122 df-ioo 13357 df-ioc 13358 df-ico 13359 df-icc 13360 df-fz 13514 df-fzo 13661 df-fl 13798 df-mod 13876 df-seq 14009 df-exp 14069 df-fac 14280 df-bc 14309 df-hash 14337 df-shft 15073 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-limsup 15474 df-clim 15491 df-rlim 15492 df-sum 15690 df-ef 16070 df-sin 16072 df-cos 16073 df-pi 16075 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-starv 17271 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ple 17276 df-ds 17278 df-unif 17279 df-hom 17280 df-cco 17281 df-rest 17421 df-topn 17422 df-0g 17440 df-gsum 17441 df-topgen 17442 df-pt 17443 df-prds 17446 df-xrs 17501 df-qtop 17506 df-imas 17507 df-xps 17509 df-mre 17583 df-mrc 17584 df-acs 17586 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18747 df-mulg 19036 df-cntz 19285 df-cmn 19748 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-cnfld 21301 df-top 22817 df-topon 22834 df-topsp 22856 df-bases 22869 df-cld 22942 df-ntr 22943 df-cls 22944 df-nei 23021 df-lp 23059 df-perf 23060 df-cn 23150 df-cnp 23151 df-haus 23238 df-tx 23485 df-hmeo 23678 df-fil 23769 df-fm 23861 df-flim 23862 df-flf 23863 df-xms 24244 df-ms 24245 df-tms 24246 df-cncf 24807 df-limc 25804 df-dv 25805 |
| This theorem is referenced by: fourierdlem66 46131 fourierdlem67 46132 fourierdlem87 46152 fourierdlem88 46153 fourierdlem103 46168 fourierdlem104 46169 |
| Copyright terms: Public domain | W3C validator |