![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qndenserrnopn | Structured version Visualization version GIF version |
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
qndenserrnopn.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
qndenserrnopn.j | ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) |
qndenserrnopn.v | ⊢ (𝜑 → 𝑉 ∈ 𝐽) |
qndenserrnopn.n | ⊢ (𝜑 → 𝑉 ≠ ∅) |
Ref | Expression |
---|---|
qndenserrnopn | ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qndenserrnopn.n | . . 3 ⊢ (𝜑 → 𝑉 ≠ ∅) | |
2 | n0 4346 | . . 3 ⊢ (𝑉 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝑉) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝑉) |
4 | qndenserrnopn.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝐼 ∈ Fin) |
6 | qndenserrnopn.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) | |
7 | qndenserrnopn.v | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ 𝐽) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑉 ∈ 𝐽) |
9 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) | |
10 | eqid 2731 | . . . . 5 ⊢ (dist‘(ℝ^‘𝐼)) = (dist‘(ℝ^‘𝐼)) | |
11 | 5, 6, 8, 9, 10 | qndenserrnopnlem 45475 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) |
12 | 11 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑉 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉)) |
13 | 12 | exlimdv 1935 | . 2 ⊢ (𝜑 → (∃𝑥 𝑥 ∈ 𝑉 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉)) |
14 | 3, 13 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2939 ∃wrex 3069 ∅c0 4322 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8826 Fincfn 8945 ℚcq 12939 distcds 17213 TopOpenctopn 17374 ℝ^crrx 25232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ico 13337 df-fz 13492 df-fzo 13635 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-sum 15640 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-prds 17400 df-pws 17402 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-ghm 19135 df-cntz 19229 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-rhm 20370 df-subrng 20442 df-subrg 20467 df-drng 20585 df-field 20586 df-abv 20656 df-staf 20684 df-srng 20685 df-lmod 20704 df-lss 20775 df-lmhm 20866 df-lvec 20947 df-sra 21017 df-rgmod 21018 df-psmet 21226 df-xmet 21227 df-met 21228 df-bl 21229 df-mopn 21230 df-cnfld 21235 df-refld 21469 df-phl 21490 df-dsmm 21598 df-frlm 21613 df-top 22717 df-topon 22734 df-topsp 22756 df-bases 22770 df-xms 24147 df-ms 24148 df-nm 24412 df-ngp 24413 df-tng 24414 df-nrg 24415 df-nlm 24416 df-clm 24911 df-cph 25017 df-tcph 25018 df-rrx 25234 |
This theorem is referenced by: qndenserrn 45477 |
Copyright terms: Public domain | W3C validator |