Proof of Theorem cos9thpiminplylem6
| Step | Hyp | Ref
| Expression |
| 1 | | cos9thpiminply.f |
. . . 4
⊢ 𝐹 = ((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))) |
| 2 | 1 | fveq2i 6878 |
. . 3
⊢
((ℂfld evalSub1 ℚ)‘𝐹) = ((ℂfld
evalSub1 ℚ)‘((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1)))) |
| 3 | 2 | fveq1i 6876 |
. 2
⊢
(((ℂfld evalSub1 ℚ)‘𝐹)‘𝑌) = (((ℂfld
evalSub1 ℚ)‘((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘𝑌) |
| 4 | | eqid 2735 |
. . . 4
⊢
(ℂfld evalSub1 ℚ) =
(ℂfld evalSub1 ℚ) |
| 5 | | cnfldbas 21317 |
. . . 4
⊢ ℂ =
(Base‘ℂfld) |
| 6 | | cos9thpiminply.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑄) |
| 7 | | cos9thpiminply.q |
. . . 4
⊢ 𝑄 = (ℂfld
↾s ℚ) |
| 8 | | eqid 2735 |
. . . 4
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 9 | | cos9thpiminply.4 |
. . . 4
⊢ + =
(+g‘𝑃) |
| 10 | | cnfldadd 21319 |
. . . 4
⊢ + =
(+g‘ℂfld) |
| 11 | | cncrng 21349 |
. . . . 5
⊢
ℂfld ∈ CRing |
| 12 | 11 | a1i 11 |
. . . 4
⊢ (𝜑 → ℂfld
∈ CRing) |
| 13 | | qsubdrg 21385 |
. . . . . 6
⊢ (ℚ
∈ (SubRing‘ℂfld) ∧ (ℂfld
↾s ℚ) ∈ DivRing) |
| 14 | 13 | simpli 483 |
. . . . 5
⊢ ℚ
∈ (SubRing‘ℂfld) |
| 15 | 14 | a1i 11 |
. . . 4
⊢ (𝜑 → ℚ ∈
(SubRing‘ℂfld)) |
| 16 | | eqid 2735 |
. . . . . 6
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
| 17 | 16, 8 | mgpbas 20103 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘𝑃)) |
| 18 | | cos9thpiminply.6 |
. . . . 5
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
| 19 | 7 | qdrng 27581 |
. . . . . . . . 9
⊢ 𝑄 ∈ DivRing |
| 20 | 19 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ DivRing) |
| 21 | 20 | drngringd 20695 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ Ring) |
| 22 | 6 | ply1ring 22181 |
. . . . . . 7
⊢ (𝑄 ∈ Ring → 𝑃 ∈ Ring) |
| 23 | 21, 22 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 24 | 16 | ringmgp 20197 |
. . . . . 6
⊢ (𝑃 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
| 25 | 23, 24 | syl 17 |
. . . . 5
⊢ (𝜑 → (mulGrp‘𝑃) ∈ Mnd) |
| 26 | | 3nn0 12517 |
. . . . . 6
⊢ 3 ∈
ℕ0 |
| 27 | 26 | a1i 11 |
. . . . 5
⊢ (𝜑 → 3 ∈
ℕ0) |
| 28 | | cos9thpiminply.x |
. . . . . . 7
⊢ 𝑋 = (var1‘𝑄) |
| 29 | 28, 6, 8 | vr1cl 22151 |
. . . . . 6
⊢ (𝑄 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
| 30 | 21, 29 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
| 31 | 17, 18, 25, 27, 30 | mulgnn0cld 19076 |
. . . 4
⊢ (𝜑 → (3 ↑ 𝑋) ∈ (Base‘𝑃)) |
| 32 | 23 | ringgrpd 20200 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ Grp) |
| 33 | | cos9thpiminply.5 |
. . . . . 6
⊢ · =
(.r‘𝑃) |
| 34 | | cos9thpiminply.k |
. . . . . . . 8
⊢ 𝐾 = (algSc‘𝑃) |
| 35 | 6 | ply1sca 22186 |
. . . . . . . . 9
⊢ (𝑄 ∈ DivRing → 𝑄 = (Scalar‘𝑃)) |
| 36 | 19, 35 | ax-mp 5 |
. . . . . . . 8
⊢ 𝑄 = (Scalar‘𝑃) |
| 37 | 6 | ply1lmod 22185 |
. . . . . . . . 9
⊢ (𝑄 ∈ Ring → 𝑃 ∈ LMod) |
| 38 | 21, 37 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ LMod) |
| 39 | 7 | qrngbas 27580 |
. . . . . . . 8
⊢ ℚ =
(Base‘𝑄) |
| 40 | 34, 36, 23, 38, 39, 8 | asclf 21840 |
. . . . . . 7
⊢ (𝜑 → 𝐾:ℚ⟶(Base‘𝑃)) |
| 41 | 27 | nn0zd 12612 |
. . . . . . . . 9
⊢ (𝜑 → 3 ∈
ℤ) |
| 42 | | zq 12968 |
. . . . . . . . 9
⊢ (3 ∈
ℤ → 3 ∈ ℚ) |
| 43 | 41, 42 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 3 ∈
ℚ) |
| 44 | | qnegcl 12980 |
. . . . . . . 8
⊢ (3 ∈
ℚ → -3 ∈ ℚ) |
| 45 | 43, 44 | syl 17 |
. . . . . . 7
⊢ (𝜑 → -3 ∈
ℚ) |
| 46 | 40, 45 | ffvelcdmd 7074 |
. . . . . 6
⊢ (𝜑 → (𝐾‘-3) ∈ (Base‘𝑃)) |
| 47 | 8, 33, 23, 46, 30 | ringcld 20218 |
. . . . 5
⊢ (𝜑 → ((𝐾‘-3) · 𝑋) ∈ (Base‘𝑃)) |
| 48 | | 1zzd 12621 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
| 49 | | zq 12968 |
. . . . . . 7
⊢ (1 ∈
ℤ → 1 ∈ ℚ) |
| 50 | 48, 49 | syl 17 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℚ) |
| 51 | 40, 50 | ffvelcdmd 7074 |
. . . . 5
⊢ (𝜑 → (𝐾‘1) ∈ (Base‘𝑃)) |
| 52 | 8, 9, 32, 47, 51 | grpcld 18928 |
. . . 4
⊢ (𝜑 → (((𝐾‘-3) · 𝑋) + (𝐾‘1)) ∈ (Base‘𝑃)) |
| 53 | | cos9thpiminplylem6.1 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 54 | 4, 5, 6, 7, 8, 9, 10, 12, 15, 31, 52, 53 | evls1addd 22307 |
. . 3
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘𝑌) = ((((ℂfld
evalSub1 ℚ)‘(3 ↑ 𝑋))‘𝑌) + (((ℂfld
evalSub1 ℚ)‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘𝑌))) |
| 55 | | eqid 2735 |
. . . . . 6
⊢
(.g‘(mulGrp‘ℂfld)) =
(.g‘(mulGrp‘ℂfld)) |
| 56 | 4, 5, 6, 7, 8, 12,
15, 18, 55, 27, 30, 53 | evls1expd 22303 |
. . . . 5
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘(3 ↑ 𝑋))‘𝑌) =
(3(.g‘(mulGrp‘ℂfld))(((ℂfld
evalSub1 ℚ)‘𝑋)‘𝑌))) |
| 57 | 4, 28, 7, 5, 12, 15 | evls1var 22274 |
. . . . . . . 8
⊢ (𝜑 → ((ℂfld
evalSub1 ℚ)‘𝑋) = ( I ↾ ℂ)) |
| 58 | 57 | fveq1d 6877 |
. . . . . . 7
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘𝑋)‘𝑌) = (( I ↾ ℂ)‘𝑌)) |
| 59 | | fvresi 7164 |
. . . . . . . 8
⊢ (𝑌 ∈ ℂ → (( I
↾ ℂ)‘𝑌) =
𝑌) |
| 60 | 53, 59 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (( I ↾
ℂ)‘𝑌) = 𝑌) |
| 61 | 58, 60 | eqtrd 2770 |
. . . . . 6
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘𝑋)‘𝑌) = 𝑌) |
| 62 | 61 | oveq2d 7419 |
. . . . 5
⊢ (𝜑 →
(3(.g‘(mulGrp‘ℂfld))(((ℂfld
evalSub1 ℚ)‘𝑋)‘𝑌)) =
(3(.g‘(mulGrp‘ℂfld))𝑌)) |
| 63 | | cnfldexp 21365 |
. . . . . 6
⊢ ((𝑌 ∈ ℂ ∧ 3 ∈
ℕ0) →
(3(.g‘(mulGrp‘ℂfld))𝑌) = (𝑌↑3)) |
| 64 | 53, 26, 63 | sylancl 586 |
. . . . 5
⊢ (𝜑 →
(3(.g‘(mulGrp‘ℂfld))𝑌) = (𝑌↑3)) |
| 65 | 56, 62, 64 | 3eqtrd 2774 |
. . . 4
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘(3 ↑ 𝑋))‘𝑌) = (𝑌↑3)) |
| 66 | 4, 5, 6, 7, 8, 9, 10, 12, 15, 47, 51, 53 | evls1addd 22307 |
. . . . 5
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘𝑌) = ((((ℂfld
evalSub1 ℚ)‘((𝐾‘-3) · 𝑋))‘𝑌) + (((ℂfld
evalSub1 ℚ)‘(𝐾‘1))‘𝑌))) |
| 67 | | cnfldmul 21321 |
. . . . . . . 8
⊢ ·
= (.r‘ℂfld) |
| 68 | 4, 5, 6, 7, 8, 33,
67, 12, 15, 46, 30, 53 | evls1muld 22308 |
. . . . . . 7
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘((𝐾‘-3) · 𝑋))‘𝑌) = ((((ℂfld
evalSub1 ℚ)‘(𝐾‘-3))‘𝑌) · (((ℂfld
evalSub1 ℚ)‘𝑋)‘𝑌))) |
| 69 | 4, 6, 7, 5, 34, 12, 15, 45, 53 | evls1scafv 22302 |
. . . . . . . 8
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘(𝐾‘-3))‘𝑌) = -3) |
| 70 | 69, 61 | oveq12d 7421 |
. . . . . . 7
⊢ (𝜑 → ((((ℂfld
evalSub1 ℚ)‘(𝐾‘-3))‘𝑌) · (((ℂfld
evalSub1 ℚ)‘𝑋)‘𝑌)) = (-3 · 𝑌)) |
| 71 | 68, 70 | eqtrd 2770 |
. . . . . 6
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘((𝐾‘-3) · 𝑋))‘𝑌) = (-3 · 𝑌)) |
| 72 | 4, 6, 7, 5, 34, 12, 15, 50, 53 | evls1scafv 22302 |
. . . . . 6
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘(𝐾‘1))‘𝑌) = 1) |
| 73 | 71, 72 | oveq12d 7421 |
. . . . 5
⊢ (𝜑 → ((((ℂfld
evalSub1 ℚ)‘((𝐾‘-3) · 𝑋))‘𝑌) + (((ℂfld
evalSub1 ℚ)‘(𝐾‘1))‘𝑌)) = ((-3 · 𝑌) + 1)) |
| 74 | 66, 73 | eqtrd 2770 |
. . . 4
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘𝑌) = ((-3 · 𝑌) + 1)) |
| 75 | 65, 74 | oveq12d 7421 |
. . 3
⊢ (𝜑 → ((((ℂfld
evalSub1 ℚ)‘(3 ↑ 𝑋))‘𝑌) + (((ℂfld
evalSub1 ℚ)‘(((𝐾‘-3) · 𝑋) + (𝐾‘1)))‘𝑌)) = ((𝑌↑3) + ((-3 · 𝑌) + 1))) |
| 76 | 54, 75 | eqtrd 2770 |
. 2
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘((3 ↑ 𝑋) + (((𝐾‘-3) · 𝑋) + (𝐾‘1))))‘𝑌) = ((𝑌↑3) + ((-3 · 𝑌) + 1))) |
| 77 | 3, 76 | eqtrid 2782 |
1
⊢ (𝜑 → (((ℂfld
evalSub1 ℚ)‘𝐹)‘𝑌) = ((𝑌↑3) + ((-3 · 𝑌) + 1))) |