| Step | Hyp | Ref
| Expression |
| 1 | | cos9thpiminplylem3.1 |
. . . . . 6
⊢ 𝑂 = (exp‘((i · (2
· π)) / 3)) |
| 2 | | ax-icn 11186 |
. . . . . . . . . 10
⊢ i ∈
ℂ |
| 3 | 2 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ i ∈ ℂ) |
| 4 | | 2cnd 12316 |
. . . . . . . . . 10
⊢ (⊤
→ 2 ∈ ℂ) |
| 5 | | picn 26417 |
. . . . . . . . . . 11
⊢ π
∈ ℂ |
| 6 | 5 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ π ∈ ℂ) |
| 7 | 4, 6 | mulcld 11253 |
. . . . . . . . 9
⊢ (⊤
→ (2 · π) ∈ ℂ) |
| 8 | 3, 7 | mulcld 11253 |
. . . . . . . 8
⊢ (⊤
→ (i · (2 · π)) ∈ ℂ) |
| 9 | | 3cn 12319 |
. . . . . . . . 9
⊢ 3 ∈
ℂ |
| 10 | 9 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 3 ∈ ℂ) |
| 11 | | 3ne0 12344 |
. . . . . . . . 9
⊢ 3 ≠
0 |
| 12 | 11 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 3 ≠ 0) |
| 13 | 8, 10, 12 | divcld 12015 |
. . . . . . 7
⊢ (⊤
→ ((i · (2 · π)) / 3) ∈ ℂ) |
| 14 | 13 | efcld 16097 |
. . . . . 6
⊢ (⊤
→ (exp‘((i · (2 · π)) / 3)) ∈
ℂ) |
| 15 | 1, 14 | eqeltrid 2838 |
. . . . 5
⊢ (⊤
→ 𝑂 ∈
ℂ) |
| 16 | 15 | sqcld 14160 |
. . . 4
⊢ (⊤
→ (𝑂↑2) ∈
ℂ) |
| 17 | | 1cnd 11228 |
. . . . 5
⊢ (⊤
→ 1 ∈ ℂ) |
| 18 | 15, 17 | addcld 11252 |
. . . 4
⊢ (⊤
→ (𝑂 + 1) ∈
ℂ) |
| 19 | 16, 18 | addcomd 11435 |
. . 3
⊢ (⊤
→ ((𝑂↑2) + (𝑂 + 1)) = ((𝑂 + 1) + (𝑂↑2))) |
| 20 | 15, 17 | addcomd 11435 |
. . . . 5
⊢ (⊤
→ (𝑂 + 1) = (1 + 𝑂)) |
| 21 | 20 | oveq1d 7418 |
. . . 4
⊢ (⊤
→ ((𝑂 + 1) + (𝑂↑2)) = ((1 + 𝑂) + (𝑂↑2))) |
| 22 | | oveq2 7411 |
. . . . . 6
⊢ (𝑛 = 0 → (𝑂↑𝑛) = (𝑂↑0)) |
| 23 | 15 | mptru 1547 |
. . . . . . . 8
⊢ 𝑂 ∈ ℂ |
| 24 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝑛 = 0 → 𝑂 ∈ ℂ) |
| 25 | 24 | exp0d 14156 |
. . . . . 6
⊢ (𝑛 = 0 → (𝑂↑0) = 1) |
| 26 | 22, 25 | eqtrd 2770 |
. . . . 5
⊢ (𝑛 = 0 → (𝑂↑𝑛) = 1) |
| 27 | | oveq2 7411 |
. . . . . 6
⊢ (𝑛 = 1 → (𝑂↑𝑛) = (𝑂↑1)) |
| 28 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝑛 = 1 → 𝑂 ∈ ℂ) |
| 29 | 28 | exp1d 14157 |
. . . . . 6
⊢ (𝑛 = 1 → (𝑂↑1) = 𝑂) |
| 30 | 27, 29 | eqtrd 2770 |
. . . . 5
⊢ (𝑛 = 1 → (𝑂↑𝑛) = 𝑂) |
| 31 | | oveq2 7411 |
. . . . 5
⊢ (𝑛 = 2 → (𝑂↑𝑛) = (𝑂↑2)) |
| 32 | 17, 15, 16 | 3jca 1128 |
. . . . 5
⊢ (⊤
→ (1 ∈ ℂ ∧ 𝑂 ∈ ℂ ∧ (𝑂↑2) ∈ ℂ)) |
| 33 | | 0cnd 11226 |
. . . . . 6
⊢ (⊤
→ 0 ∈ ℂ) |
| 34 | 33, 17, 4 | 3jca 1128 |
. . . . 5
⊢ (⊤
→ (0 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈
ℂ)) |
| 35 | | ax-1ne0 11196 |
. . . . . . 7
⊢ 1 ≠
0 |
| 36 | 35 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 1 ≠ 0) |
| 37 | 36 | necomd 2987 |
. . . . 5
⊢ (⊤
→ 0 ≠ 1) |
| 38 | | 2ne0 12342 |
. . . . . . 7
⊢ 2 ≠
0 |
| 39 | 38 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 2 ≠ 0) |
| 40 | 39 | necomd 2987 |
. . . . 5
⊢ (⊤
→ 0 ≠ 2) |
| 41 | | 1ne2 12446 |
. . . . . 6
⊢ 1 ≠
2 |
| 42 | 41 | a1i 11 |
. . . . 5
⊢ (⊤
→ 1 ≠ 2) |
| 43 | 26, 30, 31, 32, 34, 37, 40, 42 | sumtp 15763 |
. . . 4
⊢ (⊤
→ Σ𝑛 ∈ {0,
1, 2} (𝑂↑𝑛) = ((1 + 𝑂) + (𝑂↑2))) |
| 44 | | 3m1e2 12366 |
. . . . . . . 8
⊢ (3
− 1) = 2 |
| 45 | 44 | oveq2i 7414 |
. . . . . . 7
⊢ (0...(3
− 1)) = (0...2) |
| 46 | | fz0tp 13643 |
. . . . . . 7
⊢ (0...2) =
{0, 1, 2} |
| 47 | 45, 46 | eqtri 2758 |
. . . . . 6
⊢ (0...(3
− 1)) = {0, 1, 2} |
| 48 | 47 | sumeq1i 15711 |
. . . . 5
⊢
Σ𝑛 ∈
(0...(3 − 1))(𝑂↑𝑛) = Σ𝑛 ∈ {0, 1, 2} (𝑂↑𝑛) |
| 49 | 1 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 𝑂 = (exp‘((i
· (2 · π)) / 3))) |
| 50 | | ine0 11670 |
. . . . . . . . . . . . . 14
⊢ i ≠
0 |
| 51 | 50 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ i ≠ 0) |
| 52 | | pine0 26419 |
. . . . . . . . . . . . . . 15
⊢ π ≠
0 |
| 53 | 52 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ π ≠ 0) |
| 54 | 4, 6, 39, 53 | mulne0d 11887 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (2 · π) ≠ 0) |
| 55 | 3, 7, 51, 54 | mulne0d 11887 |
. . . . . . . . . . . 12
⊢ (⊤
→ (i · (2 · π)) ≠ 0) |
| 56 | 8, 10, 8, 12, 55 | divdiv32d 12040 |
. . . . . . . . . . 11
⊢ (⊤
→ (((i · (2 · π)) / 3) / (i · (2 · π)))
= (((i · (2 · π)) / (i · (2 · π))) /
3)) |
| 57 | 8, 55 | dividd 12013 |
. . . . . . . . . . . 12
⊢ (⊤
→ ((i · (2 · π)) / (i · (2 · π))) =
1) |
| 58 | 57 | oveq1d 7418 |
. . . . . . . . . . 11
⊢ (⊤
→ (((i · (2 · π)) / (i · (2 · π))) / 3)
= (1 / 3)) |
| 59 | 56, 58 | eqtrd 2770 |
. . . . . . . . . 10
⊢ (⊤
→ (((i · (2 · π)) / 3) / (i · (2 · π)))
= (1 / 3)) |
| 60 | | 3re 12318 |
. . . . . . . . . . . 12
⊢ 3 ∈
ℝ |
| 61 | 60 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ 3 ∈ ℝ) |
| 62 | | 1lt3 12411 |
. . . . . . . . . . . 12
⊢ 1 <
3 |
| 63 | 62 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ 1 < 3) |
| 64 | | recnz 12666 |
. . . . . . . . . . 11
⊢ ((3
∈ ℝ ∧ 1 < 3) → ¬ (1 / 3) ∈
ℤ) |
| 65 | 61, 63, 64 | syl2anc 584 |
. . . . . . . . . 10
⊢ (⊤
→ ¬ (1 / 3) ∈ ℤ) |
| 66 | 59, 65 | eqneltrd 2854 |
. . . . . . . . 9
⊢ (⊤
→ ¬ (((i · (2 · π)) / 3) / (i · (2 ·
π))) ∈ ℤ) |
| 67 | | efeq1 26487 |
. . . . . . . . . . 11
⊢ (((i
· (2 · π)) / 3) ∈ ℂ → ((exp‘((i ·
(2 · π)) / 3)) = 1 ↔ (((i · (2 · π)) / 3) / (i
· (2 · π))) ∈ ℤ)) |
| 68 | 67 | necon3abid 2968 |
. . . . . . . . . 10
⊢ (((i
· (2 · π)) / 3) ∈ ℂ → ((exp‘((i ·
(2 · π)) / 3)) ≠ 1 ↔ ¬ (((i · (2 · π)) /
3) / (i · (2 · π))) ∈ ℤ)) |
| 69 | 68 | biimpar 477 |
. . . . . . . . 9
⊢ ((((i
· (2 · π)) / 3) ∈ ℂ ∧ ¬ (((i · (2
· π)) / 3) / (i · (2 · π))) ∈ ℤ) →
(exp‘((i · (2 · π)) / 3)) ≠ 1) |
| 70 | 13, 66, 69 | syl2anc 584 |
. . . . . . . 8
⊢ (⊤
→ (exp‘((i · (2 · π)) / 3)) ≠
1) |
| 71 | 49, 70 | eqnetrd 2999 |
. . . . . . 7
⊢ (⊤
→ 𝑂 ≠
1) |
| 72 | | 3nn0 12517 |
. . . . . . . 8
⊢ 3 ∈
ℕ0 |
| 73 | 72 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 3 ∈ ℕ0) |
| 74 | 15, 71, 73 | geoser 15881 |
. . . . . 6
⊢ (⊤
→ Σ𝑛 ∈
(0...(3 − 1))(𝑂↑𝑛) = ((1 − (𝑂↑3)) / (1 − 𝑂))) |
| 75 | 49 | oveq1d 7418 |
. . . . . . . . . 10
⊢ (⊤
→ (𝑂↑3) =
((exp‘((i · (2 · π)) / 3))↑3)) |
| 76 | 73 | nn0zd 12612 |
. . . . . . . . . . 11
⊢ (⊤
→ 3 ∈ ℤ) |
| 77 | | efexp 16117 |
. . . . . . . . . . 11
⊢ ((((i
· (2 · π)) / 3) ∈ ℂ ∧ 3 ∈ ℤ) →
(exp‘(3 · ((i · (2 · π)) / 3))) = ((exp‘((i
· (2 · π)) / 3))↑3)) |
| 78 | 13, 76, 77 | syl2anc 584 |
. . . . . . . . . 10
⊢ (⊤
→ (exp‘(3 · ((i · (2 · π)) / 3))) =
((exp‘((i · (2 · π)) / 3))↑3)) |
| 79 | 8, 10, 12 | divcan2d 12017 |
. . . . . . . . . . . 12
⊢ (⊤
→ (3 · ((i · (2 · π)) / 3)) = (i · (2
· π))) |
| 80 | 79 | fveq2d 6879 |
. . . . . . . . . . 11
⊢ (⊤
→ (exp‘(3 · ((i · (2 · π)) / 3))) =
(exp‘(i · (2 · π)))) |
| 81 | | ef2pi 26436 |
. . . . . . . . . . 11
⊢
(exp‘(i · (2 · π))) = 1 |
| 82 | 80, 81 | eqtrdi 2786 |
. . . . . . . . . 10
⊢ (⊤
→ (exp‘(3 · ((i · (2 · π)) / 3))) =
1) |
| 83 | 75, 78, 82 | 3eqtr2d 2776 |
. . . . . . . . 9
⊢ (⊤
→ (𝑂↑3) =
1) |
| 84 | 83 | oveq2d 7419 |
. . . . . . . 8
⊢ (⊤
→ (1 − (𝑂↑3)) = (1 − 1)) |
| 85 | | 1m1e0 12310 |
. . . . . . . 8
⊢ (1
− 1) = 0 |
| 86 | 84, 85 | eqtrdi 2786 |
. . . . . . 7
⊢ (⊤
→ (1 − (𝑂↑3)) = 0) |
| 87 | 86 | oveq1d 7418 |
. . . . . 6
⊢ (⊤
→ ((1 − (𝑂↑3)) / (1 − 𝑂)) = (0 / (1 − 𝑂))) |
| 88 | 17, 15 | subcld 11592 |
. . . . . . 7
⊢ (⊤
→ (1 − 𝑂) ∈
ℂ) |
| 89 | 71 | necomd 2987 |
. . . . . . . 8
⊢ (⊤
→ 1 ≠ 𝑂) |
| 90 | 17, 15, 89 | subne0d 11601 |
. . . . . . 7
⊢ (⊤
→ (1 − 𝑂) ≠
0) |
| 91 | 88, 90 | div0d 12014 |
. . . . . 6
⊢ (⊤
→ (0 / (1 − 𝑂))
= 0) |
| 92 | 74, 87, 91 | 3eqtrd 2774 |
. . . . 5
⊢ (⊤
→ Σ𝑛 ∈
(0...(3 − 1))(𝑂↑𝑛) = 0) |
| 93 | 48, 92 | eqtr3id 2784 |
. . . 4
⊢ (⊤
→ Σ𝑛 ∈ {0,
1, 2} (𝑂↑𝑛) = 0) |
| 94 | 21, 43, 93 | 3eqtr2d 2776 |
. . 3
⊢ (⊤
→ ((𝑂 + 1) + (𝑂↑2)) = 0) |
| 95 | 19, 94 | eqtrd 2770 |
. 2
⊢ (⊤
→ ((𝑂↑2) + (𝑂 + 1)) = 0) |
| 96 | 95 | mptru 1547 |
1
⊢ ((𝑂↑2) + (𝑂 + 1)) = 0 |