MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relogcl Structured version   Visualization version   GIF version

Theorem relogcl 26484
Description: Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.)
Assertion
Ref Expression
relogcl (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)

Proof of Theorem relogcl
StepHypRef Expression
1 fvres 6877 . 2 (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) = (log‘𝐴))
2 relogf1o 26475 . . . 4 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
3 f1of 6800 . . . 4 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
42, 3ax-mp 5 . . 3 (log ↾ ℝ+):ℝ+⟶ℝ
54ffvelcdmi 7055 . 2 (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) ∈ ℝ)
61, 5eqeltrrd 2829 1 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cres 5640  wf 6507  1-1-ontowf1o 6510  cfv 6511  cr 11067  +crp 12951  logclog 26463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465
This theorem is referenced by:  logneg  26497  lognegb  26499  relogoprlem  26500  reexplog  26504  relogexp  26505  logfac  26510  logleb  26512  rplogcl  26513  logmul2  26525  logdiv2  26526  abslogle  26527  logdivlti  26529  logdivlt  26530  logdivle  26531  relogcld  26532  advlog  26563  advlogexp  26564  logccv  26572  logcxp  26578  rpcxpcl  26585  cxpmul  26597  abscxp  26601  cxple2  26606  logsqrt  26613  dvcxp1  26649  dvcxp2  26650  loglesqrt  26671  relogbcl  26683  relogbmul  26687  logbgt0b  26703  log2ub  26859  log2le1  26860  birthday  26864  cxploglim  26888  cxploglim2  26889  amgmlem  26900  logdifbnd  26904  emcllem7  26912  emre  26916  emgt0  26917  harmonicbnd3  26918  harmoniclbnd  26919  harmonicbnd4  26921  relgamcl  26972  cht2  27082  chtleppi  27121  chtublem  27122  chtub  27123  logfacubnd  27132  logfaclbnd  27133  logfacbnd3  27134  logfacrlim  27135  logexprlim  27136  efexple  27192  bposlem6  27200  bposlem7  27201  bposlem8  27202  bposlem9  27203  chebbnd1lem3  27382  chebbnd1  27383  chto1ub  27387  vmadivsum  27393  rpvmasumlem  27398  dchrvmasumlem2  27409  dchrvmasumlema  27411  dchrvmasumiflem1  27412  dchrvmasumiflem2  27413  dchrisum0fno1  27422  rpvmasum2  27423  dchrisum0re  27424  rpvmasum  27437  rplogsum  27438  dirith2  27439  logdivsum  27444  mulog2sumlem2  27446  mulog2sumlem3  27447  logsqvma  27453  log2sumbnd  27455  selberglem1  27456  selberglem2  27457  selberglem3  27458  selberg  27459  selberg2lem  27461  selberg2  27462  pntrsumo1  27476  selbergr  27479  pntrlog2bndlem4  27491  pntibndlem3  27503  xrge0iifiso  33925  logdivsqrle  34641  hgt750lem  34642  hgt750lemb  34647  reglogcl  42878  reglogltb  42879  reglogleb  42880  reglogmul  42881  reglogexp  42882  reglogbas  42883  reglog1  42884  stirlinglem12  46083  stirlinglem13  46084  stirlinglem14  46085  lighneallem2  47607  logbge0b  48552  logblt1b  48553
  Copyright terms: Public domain W3C validator