| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relogcl | Structured version Visualization version GIF version | ||
| Description: Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| Ref | Expression |
|---|---|
| relogcl | ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 6859 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) = (log‘𝐴)) | |
| 2 | relogf1o 26508 | . . . 4 ⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ | |
| 3 | f1of 6782 | . . . 4 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (log ↾ ℝ+):ℝ+⟶ℝ |
| 5 | 4 | ffvelcdmi 7037 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) ∈ ℝ) |
| 6 | 1, 5 | eqeltrrd 2829 | 1 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ↾ cres 5633 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 ℝcr 11043 ℝ+crp 12927 logclog 26496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-sin 16011 df-cos 16012 df-pi 16014 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lp 23056 df-perf 23057 df-cn 23147 df-cnp 23148 df-haus 23235 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-xms 24241 df-ms 24242 df-tms 24243 df-cncf 24804 df-limc 25800 df-dv 25801 df-log 26498 |
| This theorem is referenced by: logneg 26530 lognegb 26532 relogoprlem 26533 reexplog 26537 relogexp 26538 logfac 26543 logleb 26545 rplogcl 26546 logmul2 26558 logdiv2 26559 abslogle 26560 logdivlti 26562 logdivlt 26563 logdivle 26564 relogcld 26565 advlog 26596 advlogexp 26597 logccv 26605 logcxp 26611 rpcxpcl 26618 cxpmul 26630 abscxp 26634 cxple2 26639 logsqrt 26646 dvcxp1 26682 dvcxp2 26683 loglesqrt 26704 relogbcl 26716 relogbmul 26720 logbgt0b 26736 log2ub 26892 log2le1 26893 birthday 26897 cxploglim 26921 cxploglim2 26922 amgmlem 26933 logdifbnd 26937 emcllem7 26945 emre 26949 emgt0 26950 harmonicbnd3 26951 harmoniclbnd 26952 harmonicbnd4 26954 relgamcl 27005 cht2 27115 chtleppi 27154 chtublem 27155 chtub 27156 logfacubnd 27165 logfaclbnd 27166 logfacbnd3 27167 logfacrlim 27168 logexprlim 27169 efexple 27225 bposlem6 27233 bposlem7 27234 bposlem8 27235 bposlem9 27236 chebbnd1lem3 27415 chebbnd1 27416 chto1ub 27420 vmadivsum 27426 rpvmasumlem 27431 dchrvmasumlem2 27442 dchrvmasumlema 27444 dchrvmasumiflem1 27445 dchrvmasumiflem2 27446 dchrisum0fno1 27455 rpvmasum2 27456 dchrisum0re 27457 rpvmasum 27470 rplogsum 27471 dirith2 27472 logdivsum 27477 mulog2sumlem2 27479 mulog2sumlem3 27480 logsqvma 27486 log2sumbnd 27488 selberglem1 27489 selberglem2 27490 selberglem3 27491 selberg 27492 selberg2lem 27494 selberg2 27495 pntrsumo1 27509 selbergr 27512 pntrlog2bndlem4 27524 pntibndlem3 27536 xrge0iifiso 33918 logdivsqrle 34634 hgt750lem 34635 hgt750lemb 34640 reglogcl 42871 reglogltb 42872 reglogleb 42873 reglogmul 42874 reglogexp 42875 reglogbas 42876 reglog1 42877 stirlinglem12 46076 stirlinglem13 46077 stirlinglem14 46078 lighneallem2 47600 logbge0b 48545 logblt1b 48546 |
| Copyright terms: Public domain | W3C validator |