| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relogcl | Structured version Visualization version GIF version | ||
| Description: Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| Ref | Expression |
|---|---|
| relogcl | ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 6894 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) = (log‘𝐴)) | |
| 2 | relogf1o 26525 | . . . 4 ⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ | |
| 3 | f1of 6817 | . . . 4 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (log ↾ ℝ+):ℝ+⟶ℝ |
| 5 | 4 | ffvelcdmi 7072 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) ∈ ℝ) |
| 6 | 1, 5 | eqeltrrd 2835 | 1 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ↾ cres 5656 ⟶wf 6526 –1-1-onto→wf1o 6529 ‘cfv 6530 ℝcr 11126 ℝ+crp 13006 logclog 26513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-ioc 13365 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-fac 14290 df-bc 14319 df-hash 14347 df-shft 15084 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-limsup 15485 df-clim 15502 df-rlim 15503 df-sum 15701 df-ef 16081 df-sin 16083 df-cos 16084 df-pi 16086 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-lp 23072 df-perf 23073 df-cn 23163 df-cnp 23164 df-haus 23251 df-tx 23498 df-hmeo 23691 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-xms 24257 df-ms 24258 df-tms 24259 df-cncf 24820 df-limc 25817 df-dv 25818 df-log 26515 |
| This theorem is referenced by: logneg 26547 lognegb 26549 relogoprlem 26550 reexplog 26554 relogexp 26555 logfac 26560 logleb 26562 rplogcl 26563 logmul2 26575 logdiv2 26576 abslogle 26577 logdivlti 26579 logdivlt 26580 logdivle 26581 relogcld 26582 advlog 26613 advlogexp 26614 logccv 26622 logcxp 26628 rpcxpcl 26635 cxpmul 26647 abscxp 26651 cxple2 26656 logsqrt 26663 dvcxp1 26699 dvcxp2 26700 loglesqrt 26721 relogbcl 26733 relogbmul 26737 logbgt0b 26753 log2ub 26909 log2le1 26910 birthday 26914 cxploglim 26938 cxploglim2 26939 amgmlem 26950 logdifbnd 26954 emcllem7 26962 emre 26966 emgt0 26967 harmonicbnd3 26968 harmoniclbnd 26969 harmonicbnd4 26971 relgamcl 27022 cht2 27132 chtleppi 27171 chtublem 27172 chtub 27173 logfacubnd 27182 logfaclbnd 27183 logfacbnd3 27184 logfacrlim 27185 logexprlim 27186 efexple 27242 bposlem6 27250 bposlem7 27251 bposlem8 27252 bposlem9 27253 chebbnd1lem3 27432 chebbnd1 27433 chto1ub 27437 vmadivsum 27443 rpvmasumlem 27448 dchrvmasumlem2 27459 dchrvmasumlema 27461 dchrvmasumiflem1 27462 dchrvmasumiflem2 27463 dchrisum0fno1 27472 rpvmasum2 27473 dchrisum0re 27474 rpvmasum 27487 rplogsum 27488 dirith2 27489 logdivsum 27494 mulog2sumlem2 27496 mulog2sumlem3 27497 logsqvma 27503 log2sumbnd 27505 selberglem1 27506 selberglem2 27507 selberglem3 27508 selberg 27509 selberg2lem 27511 selberg2 27512 pntrsumo1 27526 selbergr 27529 pntrlog2bndlem4 27541 pntibndlem3 27553 xrge0iifiso 33912 logdivsqrle 34628 hgt750lem 34629 hgt750lemb 34634 reglogcl 42860 reglogltb 42861 reglogleb 42862 reglogmul 42863 reglogexp 42864 reglogbas 42865 reglog1 42866 stirlinglem12 46062 stirlinglem13 46063 stirlinglem14 46064 lighneallem2 47568 logbge0b 48491 logblt1b 48492 |
| Copyright terms: Public domain | W3C validator |