| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relogcl | Structured version Visualization version GIF version | ||
| Description: Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| Ref | Expression |
|---|---|
| relogcl | ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 6841 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) = (log‘𝐴)) | |
| 2 | relogf1o 26502 | . . . 4 ⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ | |
| 3 | f1of 6763 | . . . 4 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (log ↾ ℝ+):ℝ+⟶ℝ |
| 5 | 4 | ffvelcdmi 7016 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) ∈ ℝ) |
| 6 | 1, 5 | eqeltrrd 2832 | 1 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ↾ cres 5616 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 ℝcr 11005 ℝ+crp 12890 logclog 26490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 df-log 26492 |
| This theorem is referenced by: logneg 26524 lognegb 26526 relogoprlem 26527 reexplog 26531 relogexp 26532 logfac 26537 logleb 26539 rplogcl 26540 logmul2 26552 logdiv2 26553 abslogle 26554 logdivlti 26556 logdivlt 26557 logdivle 26558 relogcld 26559 advlog 26590 advlogexp 26591 logccv 26599 logcxp 26605 rpcxpcl 26612 cxpmul 26624 abscxp 26628 cxple2 26633 logsqrt 26640 dvcxp1 26676 dvcxp2 26677 loglesqrt 26698 relogbcl 26710 relogbmul 26714 logbgt0b 26730 log2ub 26886 log2le1 26887 birthday 26891 cxploglim 26915 cxploglim2 26916 amgmlem 26927 logdifbnd 26931 emcllem7 26939 emre 26943 emgt0 26944 harmonicbnd3 26945 harmoniclbnd 26946 harmonicbnd4 26948 relgamcl 26999 cht2 27109 chtleppi 27148 chtublem 27149 chtub 27150 logfacubnd 27159 logfaclbnd 27160 logfacbnd3 27161 logfacrlim 27162 logexprlim 27163 efexple 27219 bposlem6 27227 bposlem7 27228 bposlem8 27229 bposlem9 27230 chebbnd1lem3 27409 chebbnd1 27410 chto1ub 27414 vmadivsum 27420 rpvmasumlem 27425 dchrvmasumlem2 27436 dchrvmasumlema 27438 dchrvmasumiflem1 27439 dchrvmasumiflem2 27440 dchrisum0fno1 27449 rpvmasum2 27450 dchrisum0re 27451 rpvmasum 27464 rplogsum 27465 dirith2 27466 logdivsum 27471 mulog2sumlem2 27473 mulog2sumlem3 27474 logsqvma 27480 log2sumbnd 27482 selberglem1 27483 selberglem2 27484 selberglem3 27485 selberg 27486 selberg2lem 27488 selberg2 27489 pntrsumo1 27503 selbergr 27506 pntrlog2bndlem4 27518 pntibndlem3 27530 xrge0iifiso 33948 logdivsqrle 34663 hgt750lem 34664 hgt750lemb 34669 reglogcl 42993 reglogltb 42994 reglogleb 42995 reglogmul 42996 reglogexp 42997 reglogbas 42998 reglog1 42999 stirlinglem12 46193 stirlinglem13 46194 stirlinglem14 46195 lighneallem2 47716 logbge0b 48674 logblt1b 48675 |
| Copyright terms: Public domain | W3C validator |