| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relogcl | Structured version Visualization version GIF version | ||
| Description: Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| Ref | Expression |
|---|---|
| relogcl | ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 6880 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) = (log‘𝐴)) | |
| 2 | relogf1o 26482 | . . . 4 ⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ | |
| 3 | f1of 6803 | . . . 4 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (log ↾ ℝ+):ℝ+⟶ℝ |
| 5 | 4 | ffvelcdmi 7058 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((log ↾ ℝ+)‘𝐴) ∈ ℝ) |
| 6 | 1, 5 | eqeltrrd 2830 | 1 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ↾ cres 5643 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 ℝcr 11074 ℝ+crp 12958 logclog 26470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-log 26472 |
| This theorem is referenced by: logneg 26504 lognegb 26506 relogoprlem 26507 reexplog 26511 relogexp 26512 logfac 26517 logleb 26519 rplogcl 26520 logmul2 26532 logdiv2 26533 abslogle 26534 logdivlti 26536 logdivlt 26537 logdivle 26538 relogcld 26539 advlog 26570 advlogexp 26571 logccv 26579 logcxp 26585 rpcxpcl 26592 cxpmul 26604 abscxp 26608 cxple2 26613 logsqrt 26620 dvcxp1 26656 dvcxp2 26657 loglesqrt 26678 relogbcl 26690 relogbmul 26694 logbgt0b 26710 log2ub 26866 log2le1 26867 birthday 26871 cxploglim 26895 cxploglim2 26896 amgmlem 26907 logdifbnd 26911 emcllem7 26919 emre 26923 emgt0 26924 harmonicbnd3 26925 harmoniclbnd 26926 harmonicbnd4 26928 relgamcl 26979 cht2 27089 chtleppi 27128 chtublem 27129 chtub 27130 logfacubnd 27139 logfaclbnd 27140 logfacbnd3 27141 logfacrlim 27142 logexprlim 27143 efexple 27199 bposlem6 27207 bposlem7 27208 bposlem8 27209 bposlem9 27210 chebbnd1lem3 27389 chebbnd1 27390 chto1ub 27394 vmadivsum 27400 rpvmasumlem 27405 dchrvmasumlem2 27416 dchrvmasumlema 27418 dchrvmasumiflem1 27419 dchrvmasumiflem2 27420 dchrisum0fno1 27429 rpvmasum2 27430 dchrisum0re 27431 rpvmasum 27444 rplogsum 27445 dirith2 27446 logdivsum 27451 mulog2sumlem2 27453 mulog2sumlem3 27454 logsqvma 27460 log2sumbnd 27462 selberglem1 27463 selberglem2 27464 selberglem3 27465 selberg 27466 selberg2lem 27468 selberg2 27469 pntrsumo1 27483 selbergr 27486 pntrlog2bndlem4 27498 pntibndlem3 27510 xrge0iifiso 33932 logdivsqrle 34648 hgt750lem 34649 hgt750lemb 34654 reglogcl 42885 reglogltb 42886 reglogleb 42887 reglogmul 42888 reglogexp 42889 reglogbas 42890 reglog1 42891 stirlinglem12 46090 stirlinglem13 46091 stirlinglem14 46092 lighneallem2 47611 logbge0b 48556 logblt1b 48557 |
| Copyright terms: Public domain | W3C validator |